

What We'll Talk About...

- What is pesticide environmental fate?Why is it important?
- Dislodgeable foliar residues
 - Why is it important???
 - Current research
 - Research implications
 - Best management practices
- Questions???

Pesticide Fate Research in Turfgrass... What is it???

- What happens to a pesticide after application?
 - What/who does it affect?
 - Where can you find it?
 - How long does it persist?

Pesticide Fate Research in Turfgrass... Why is it Important???

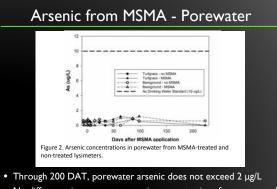
Preserve tools <u>today</u>, while providing information required for the implementation of best application practices in the <u>future</u>

Pesticide Fate Research in Turfgrass... Why is it Important???

- Keeping the right products on shelves
- Reduces potential for adverse effects on off-target areas and species
 - Environmental, ecological
 - Groundwater, surface water bodiesHuman health effects
 - Worker and non-worker exposure

Pesticide Fate Research in Turfgrass... Why is it Important???

- Keeping the right products on shelves
- Reduces potential for adverse clocks on off-target areas and species
- Environmental, ecological
- Groundwater, surface water bodi
 Human health effects
- Worker and non-worker exposu


Pesticide Fate Research in Turfgrass... Why is it Important???

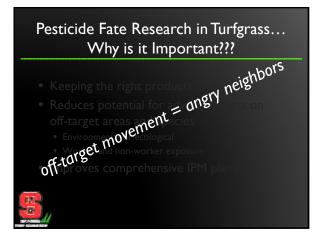
- Keeping the right products on shelves
 - MSMA
 - SPIA
 August 10, 2006: EPA proposed ban on all organic arsenicals
 January 16, 2009: MAA research task force reaches agreement with EPA
 September, 2012: EPA announced continued use of stocks
 Athletic fields not on current labels

 - 2,4-D
 - Public concerns intensifying regarding its use
 Re-registred in 2013
 Imidacloprid
 Linked to bee colony collapse
 2013 European Union bans its use

 - Glyphosate
 IARC (WHO) classified as probable carcinogen (Group 2A)
 - Sulfonylurea herbicides Recent risk assessment

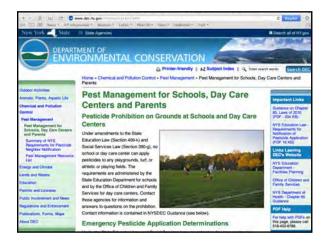
No difference in porewater arsenic concentrations for nontreated and MSMA-treated lysimeters

Pesticide Fate Research in Turfgrass... Why is it Important???


Keeping the wrong products off shelves too...

Pesticide Fate Research in Turfgrass... Why is it Important???

- Reduces potential for adverse effects on off-target areas and species
 - Environmental, ecological
 - Groundwater, surface water bodies • Human health effects
 - Worker and non-worker exposure

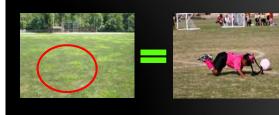


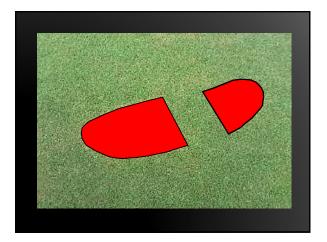
Public Concern

- Public concern about pesticide use
 - "For the price of a green lawn, we are poisoning our children." (Family Circle Magazine, 1991)
- Legislative bans introduced
 - Montgomery County, Maryland has become first major municipality to ban use of pesticides on private lawns (Washington Post, Oct. 2016)

Athletic Field Use

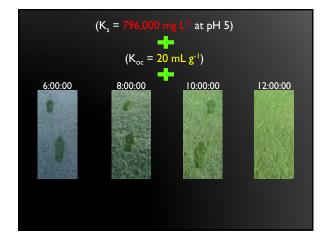
- Athletic fields commonly used throughout society
 > 700,000 managed fields in the U.S. (NTEP 2003)
 > 40% of the U.S. population ages 7 to 44 participate in baseball, football, golf, soccer and/or softball (U.S. Census 2009)

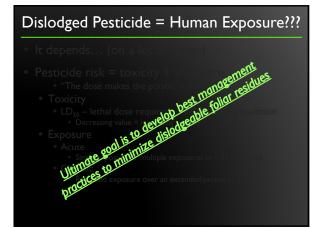


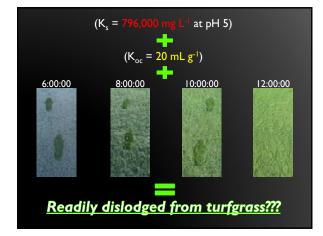

Athletic Field Management

Weeds (and other pests) can reduce playing surface strength and uniformity...
SAFETY CONCERNS!!!

Dislodgeable Foliar Residues


 "Residues that may be transferred to the skin as a result of contact and are available for dermal absorption or ingestion." (EPA 1997)





Dislodged Pesticide = Human Exposure???

- It depends... (on a lot of things)
- Pesticide risk = toxicity + exposure
 "The dose makes the poison" Paracelsus
 - Toxicity
 - LD₅₀ lethal dose required to kill 50% of a population
 Decreasing value = increasing toxicity
 - Exposure
 - Acute
 - Single exposure or multiple exposures in < 24 hr period
 Chronic
 - Repeated exposure over an extended period of time

Experimental Approach

- All Soccer Projects -

2,4-D Dislodge Measurement

2,4-D dislodge via soccer ball roll

•

Size 4 soccer ball for ages 8 to 12 yr (FIFA)
Double-wrapped with a 5 by 120 cm absorbent material
Rolled over a 12 ft distance

Modified EPA method MRID 420453-01
 High performance liquid chromatography-Diode array detector
 LOD = 1 mg kg⁻¹

Experiment Initiation

- 24 hr prior to initiation area was:
 Mown (clippings collected)
 Irrigated to field capacity
- **ÄMINE40**
- 2,4-D was applied:
 to 2.5 x 13.3 ft plots (3 ft alleys)
 - via a single nozzle (8004 E), CO₂-pressurized sprayer calibrated to deliver 20 gal A⁻¹ (lowest labeled carrier volume)
 - at 1.9 lb ai A⁻¹ (highest labeled application rate)
 - at 14:00 to ensure foliage was dry and allow > 5 hr sunlight

Experimental Design & Statistical Analyses

- Randomized complete block design
- Three replicates
 - Nontreated checks included to ensure trial area was not contaminated and for lab residue recovery analysis
- Data subjected to ANOVA (P < 0.05)
- Means separation according to Fisher's Protected LSD (P = 0.05)
- Pearson correlation coefficients (P < 0.05) to compare dislodgeability with environmental conditions

Objectives

- Compare dislodgeable foliar residues:
 - over days after treatment (DAT) and time within a day (TWD)
 - in overseeded vs non-overseeded bermudagrass
 - when irrigated vs. non-irrigated after treatment

Objectives

- Compare dislodgeable foliar residues:
 over days after treatment (DAT) and time within a day (TWD)
 - In overseeded vs non-overseed

TWD ^e	DAT ^d						
	1	2	3	6	I 2 ^r		
5:00	4.0	2.2	0.8	0.2	ND		
7:00	3.7	2.0	1.0	ND	ND		
9:00	3.5	1.7	0.8	ND	ND		
11:00	0.5	0.0	0.0	ND	ND		
13:00	0.0 🗸	0.0	0.0	ND V			
LSD _{0.05}	1.1	I.3	0.9	NS			
(720 in ²) at each co	ellection timing.			lled over a unique 2	4-D treated an		
	1.3 % of applied) (0 er two experimental		of applied)				
	T, days after treatme		able				

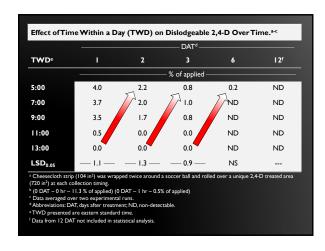
 6:00
 8:00
 10:00
 12:00

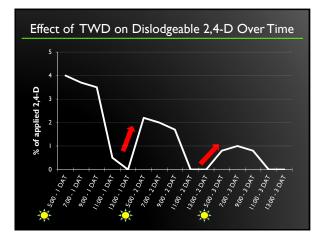
 2:2?
 2:2?
 2:2?
 2:2?

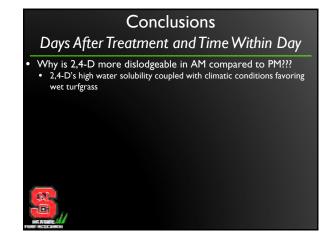
 10:00
 2:2?
 2:2?
 2:2?

 10:00
 1:00
 1:00
 1:00

 10:00
 2:2?
 1:00
 2:2?


 10:00
 1:00
 1:00
 1:00


 10:00
 1:00
 1:00
 1:00


 10:00
 1:00
 0:13:00
 EST

TWD ^e		DAT ^d						
	I	2	3	6	I 2 ^r			
5:00	4.0	2.2	0.8	0.2	ND			
7:00	3.7	2.0	1.0	ND	ND			
9:00	3.5	1.7	0.8	ND	ND			
11:00	0.5	0.0	0.0	ND	ND			
13:00	0.0	0.0	0.0	ND	ND			
LSD _{0.05}	I.I	I.3	0.9	NS				
(720 in ²) at each co b (0 DAT – 0 hr – ^c Data averaged ov ^d Abbreviations: DA ° TWD presented a		DAT – 1 hr – 0.5% runs. ent; ND, non-detect time.		d over a unique 2,4	4-D treated area			

	DAT ^d						
TWD ^e	I	2	3	6	l 2 ^f		
5:00	4.0	2.2	0.8	0.2	ND		
7:00	3.7	2.0	1.0	ND	ND		
9:00	3.5	1.7	0.8	ND	ND		
11:00	0.5	0.0	0.0	ND	ND		
13:00	0.0	0.0	0.0	ND	ND		
LSD _{0.05}	— I.I —	— I.3 —	0.9	NS			
720 in ²) at each (0 DAT – 0 hr – Data averaged o Abbreviations: D TWD presented	p (104 in ²) was wrapp collection timing. 11.3 % of applied) (0 ver two experimental AT, days after treatme are eastern standard AT not included in stat	DAT – 1 hr – 0.5% runs. ent; ND, non-detect time.	of applied)	ed over a unique 2,	4-D treated area		

Conclusions Days After Treatment and Time Within Day

- Following application, 2,4-D dislodgeability decreases as: TWD increases
 - Trend only observed through 3 DAT
- DAT increases •
 - 5 times more 2,4-D was dislodged at 5:00, I DAT than 5:00, 3 DAT

More 2,4-D dislodged in subsequent morning than previous afternoon

- Dislodgeability changes as atmospheric conditions change
 - 2,4-D dislodgeability increases as: Relative humidity increases

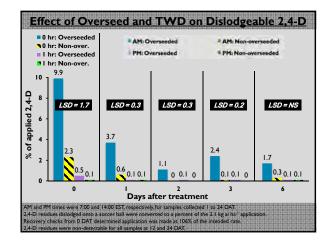
 - (Air temperature dew point) decreases Leaf wetness increases
 - Time from sunrise decreases

Pearson correlation coefficients for the relationships between climatic parameters with dislodgeable 2,4-D following an application on a simulated soccer field.^a

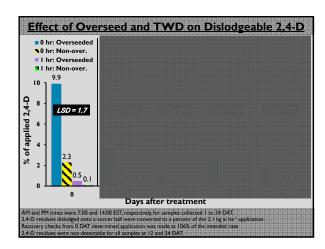
Climatic	% dislodged of the applied						
parameters	I DAT ^b		2 DAT		3 DAT		
	r	p-val		p-val		p-val	
RH	0.79	0.005	0.82	< 0.0001	0.60	0.0176	
AT - DP	-0.89	0.0003	-0.82	0.0002	-0.64	0.0107	
LW	0.67	0.0061	0.90	< 0.0001	0.53	0.0399	
TFS	-0.86	< 0.0001	-0.83	0.0001	-0.53	0.0407	

s: DAT. days nt: RH. relat ity:AT air temperature: DP dew point: I W leaf wetness

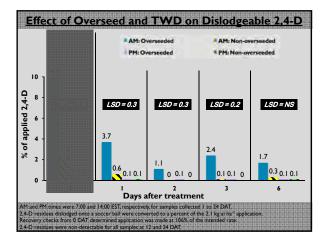
Conclusions

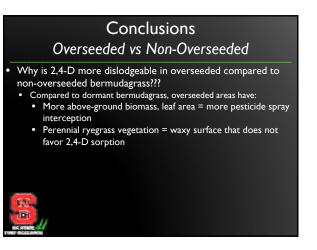

Days After Treatment and Time Within Day

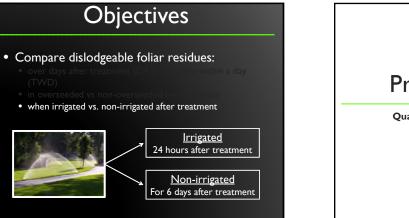
Why is 2,4-D more dislodgeable in AM compared to PM???


Objectives

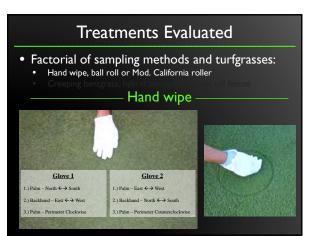
- Compare dislodgeable foliar residues:
 - in overseeded vs non-overseeded bermudagrass

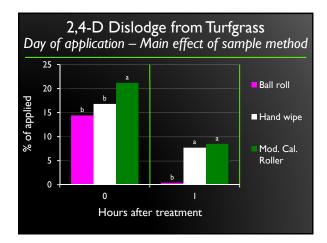




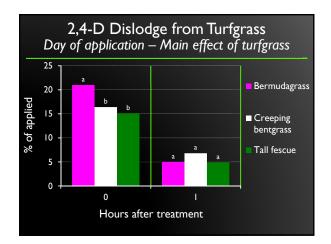

Conclusions Overseeded vs Non-Overseeded • 19 times less dislodged after 1 hr drying period • 0.5% of the applied dislodged at 1 hr • 0.1% of the applied dislodged at 1 hr • 0.1% of the applied dislodged at PM samplings from 1 to 6 DAT • Overseed = Non-overseed • Dislodgeable residues not detected beyond 6 DAT • Overseeded vs. non-overseeded bermudagrass • Greater 2.4-D was dislodged in overseeded bermudagrass at all AM sample timings from 1 to 6 DAT • Overseeded bermudagrass • Joverseeded bermudagrass • Greater 2.4-D was dislodged in overseeded bermudagrass at all AM sample timings from 1 to 6 DAT • Overseeded bermudagrass • J.4-D re-suspends on turgrass • 1.7% of the applied 2.4-D dislodged at 6 DAT!!!

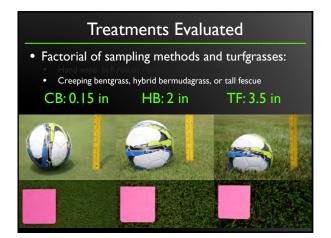


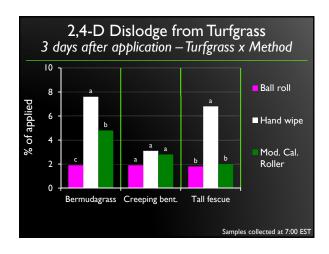


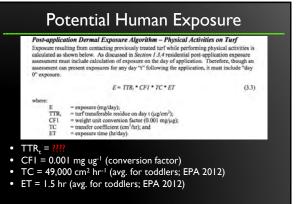

Conclusions Irrigation

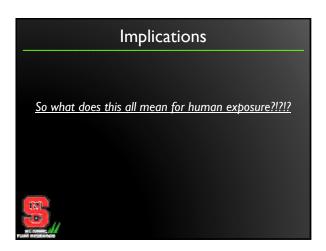
- Across both years:
 - No differences before irrigation was applied
 - After 2 DAT:

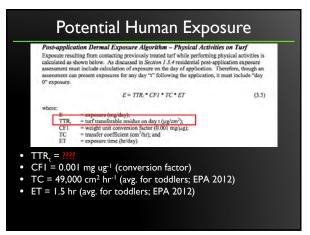

 - Less 2.4-D was dislodged in irrigated than non-irrigated turfgrass
 < 1% of the applied was dislodged from irrigated turfgrass
 I.6 to 2.3% of the applied was dislodged from non-irrigated turfgrass
 - 1.9% of the applied was dislodged at 7 DAT in year 2!!!
- After 14 DAT, non-detectable 2,4-D residues
- Research implications
- Light irrigation/rainfall following 2,4-D application reduces dislodgeable residues
 - Balance weed control and reducing dislodgeability

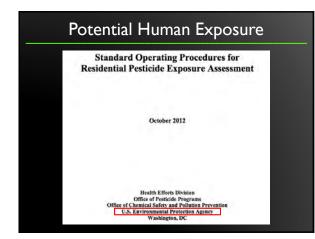


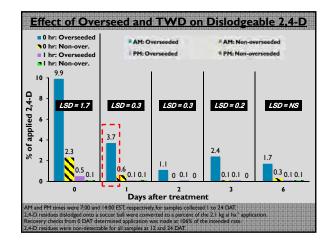

Image: Second second

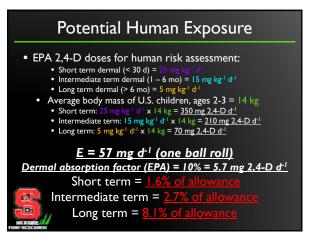




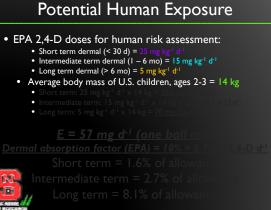





2,4-D Dislodge Conclusions System characteristics affect 2,4-D dislodge Can vary between turfgrass species Canopy moisture presence increases dislodge Can vary by sampling method Can vary by sampling method To reduce 2,4-D dislodge Irrigate areas 24 hours after treatment Increase spray carrier volume 80 GPA > 40 GPA = 20 GPA Use nozzles delivering coarse spray droplets AIXR > DG = XR



$\begin{aligned} & \textbf{Potential Human Exposure} \\ & \textbf{Potential Power Algorithm - Physical Activities of a statistical data show the form of the performing physical activities is a statistical data show the form of a statistical data of the performing physical activities is a statistical data show the form of a statistical data of the performance of the application constraints and the data and the performance of the perfor$


• ET = 1.5 hr (avg. for toddlers; EPA 2012)

Best Management Practices to Minimize 2,4-D Dislodgement

- Turfgrass managers and athletic field schedulers should coordinate 2,4-D (and other pesticides) applications with events to provide an appropriate buffer period to minimize human exposure.
- Workers and non-workers should enter athletic fields treated with 2,4-D with caution for 2-3 d following application.
 - Data suggest afternoon hours are safe for re-entry
- Irrigate 2,4-D treated areas 24 hr following application

