
WHAT ABOUT THE **MICRONUTRIENTS?**

NICK CHRISTIANS IOWA STATE UNIVERSITY

17 ESSENTIAL ELEMENTS

- CARBON C
- HYDROGEN H
- OXYGEN O
- PHOSPHORUS P
 POTASSIUM K
 NITROGEN N

- SULFUR S
- CALCIUM Ca
- IRON Fe
- MAGNESIUM Mg
- BORON B
- MANGANESE Mn
- COPPER Cu
- ZINC Zn
- MOLYBDENUM Mo
- CHLORINE CI
- NICKEL Ni

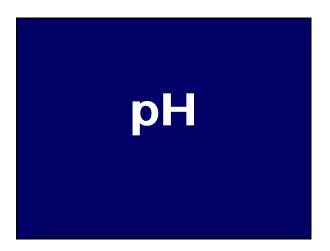
MACRONUTRIENTS

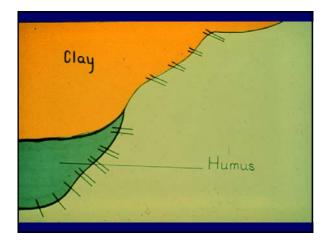
- 1000 mg/kg (PPM) or more
- C, H, O, N, P, K, S, Mg, AND Ca

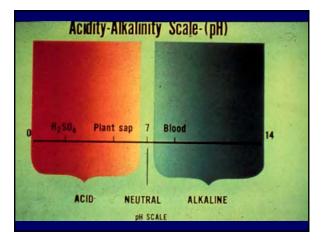
MICRONUTRIENTS

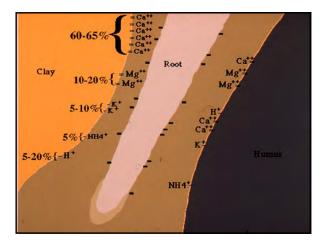
- Less than 100 mg/kg (PPM)
- Mo, Cu, Zn, Mn, B, Fe, Cl, and Ni

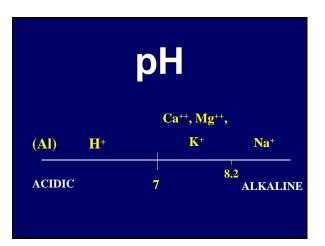
17 ESSENTIAL ELEMENTS

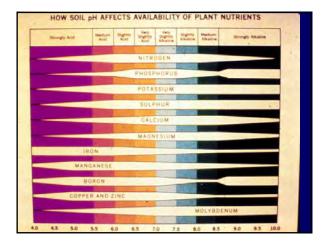

- CARBON C
- HYDROGEN H
- OXYGEN O
- PHOSPHORUS P
- POTASSIUM K
- NITROGEN N
- SULFUR S
- CALCIUM Ca

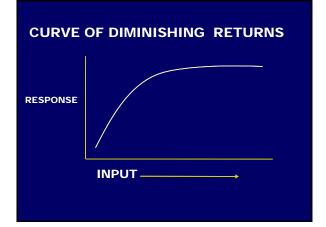

- IRON Fe
- MAGNESIUM Mg
- BORON B
- MANGANESE Mn
- COPPER Cu
- ZINC Zn
- MOLYBDENUM Mo
- CHLORINE CI NICKEL Ni

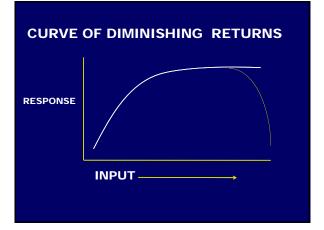

CATION EXCHANGE CAPACITY (CEC)


THE ABILITY TO **EXCHANGE CATIONS**


ELEMENT	SYMBOL	CATION
Hydrogen	Н	H ⁺
Calcium	Ca	Ca++
Magnesium	Mg	Mq++
Potassium	K	K+
Sodium	Na	Na ⁺







MAGNESIUM (Mg)

- CENTER OF CHLOROPHYLL
- SYMPTOM CHLOROSIS
- LOW pH AND LOW CEC

Strongly Acid	Madun Sa	1	nity Sugnity	Alkaline	Madam Alkaline	Strongly Alkales	
	1000		TROGEN	in part			
	-	-	THULL N	Ph. Cont			
		PHO	SPHORU	\$	-	-	
		PO	TASSIUM	The second		-	
	1000			E and			
	-	51	JLPHUR	-	-		
		0	ALCIUM	-		100 A	
		-	1	0-00			
		MA	GNESIUN	-			
IRC	N	-		100			
	ANESE			a al			
MANG	ANESE		-	-			
80	RON			-			
COPPER	AND ZIN			1954			
COTTE			No. of Color	Es it.			
	100		10.00	1	NOLYBOE	NUM	-

SULFUR (S)

- YELLOWING OF YOUNGER LEAVES
- SLOW GROWTH
- RARE IN MOST OF U.S. BECAUSE OF HIGH SULFUR COAL

IRON (Fe)

- COFACTOR FOR CHLOROPHYLL FORMATION
- SYMPTOM CHLOROSIS
- HIGH pH
- MOST COMMON OF ALL MICRONUTRIENT DEFICIENCIES

SUMMER INDUCED CHLOROSIS

- DAVID DEVETTER, MS STUDENT
- DEVELOPS DURING HIGH TEMPERATURE PERIODS
- NOT OBSERVED IN SPRING AND FALL
- USUALLY ON SAND, ALSO ON SOIL
- IT IS AN IRON PROBLEM

OUR OBSERVATIONS

- Summer-induced iron chlorosis
 - Appears from late July to early September
 - Goes away if left untreated
 - Bentgrass and bluegrass
 - Widespread
 - Multiple countries
 - Golf courses
 - Sports fields
 - Home lawns
 - * While common on sand soils it is present in finer textured soils as well

Study #1: Nutrient trial

- Objective: determine if summer-induced chlorosis can be corrected by nutrient treatments
- RCBD with three blocks and 18 treatments

Study #3: Preventive iron application

- Objective: determine if early iron applications can prevent summer-induced iron chlorosis
- RCBD with three blocks and nine treatments

Conclusions

- Summer-induced chlorosis was caused by an iron deficiency
- Soil temperature may play a role in summer-induced iron chlorosis
- Summer-induced iron chlorosis can be treated with iron fertilization
- Higher rates of iron lead to more color recovery
- Treating before symptoms occur does not work
- Control of chlorosis depends on timing of iron fertilization

Study #3: Preventive iron application

- The answer was no
- Fe had to be applied following the onset of chlorosis

CALCIUM

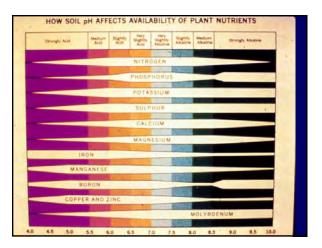
- YOUNGER LEAVES TURN REDDISH-BROWN
- FADES TO RED
- LOW pH CONDITIONS

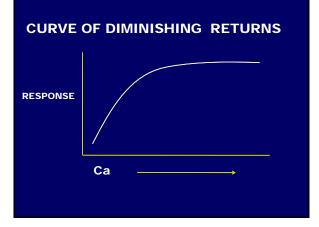
Study #6: Field heating treatments

 Objective: generate summer-induced iron chlorosis by increasing root zone soil temperature during the spring of 2007

CALCIUM

- New emphasis on Ca in 90's
 - Ca applied to Calcareous (CaCO₃) sands
- Ca/Mg ratios
 - Gypsum (CaSO₄)
 - Other expensive amendments
- Calcareous sands for greens and sports fields
 - Soil test methods?


Rod St. John


- Sales to turf industry in mid 90's
- Strong emphasis on Ca
 High markup
- Good soils background
- Began MS in 2000
 - Ca uptake from sand media
- Ph.D in 2002
 - Soil testing
 - Ca/Mg ratios etc.

MANGANESE

- YELLOWING SIMILAR TO IRON DEFICIENCY
- VEINS REMAIN GREEN TIPS MAY REMAIN GREEN
- LEAVES DROP

Zinc Toxicity

Grant Spear MS student Iowa State

ZINC TOXICITY

- SOIL TESTING LABS - 18 TO 20 PPM TOXIC
- OBSERVED - 50 TO 63 PPM WITH NO DAMAGE

BORON

1 TO 2 ppm SEWAGE EFFLUENT

SUMMARY

- CREEPING BENTGRASS CAN TOLERATE MUCH HIGHER LEVELS OF ZN THAN ONCE THOUGHT
- LEVELS TERMED EXCESSIVE BY SOIL TESTING LABS ARE WELL WITHIN THE TOLERANCE LEVELS OF CREEPING BENTGRASS

COPPER (Cu)

MIKE FAUST MS PROJECT '98 TO '99

0 to 600 ppm Cu

Cu reduced Bentgrass rooting at 200 ppm and above. Approximately 50% reduction at 600 ppm