Environmental Fate of Pesticides and How to Answer the Public's and Consumer's Questions

David Gardner

The Ohio State University gardner.254@osu.edu http://buckeyeturf.osu.edu

Environmental Issues

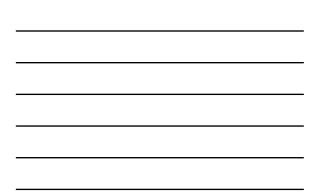
- Dramatic impact on construction and management of golf courses as well as lawn and landscape operations and sports facilities
 - > Pesticide and fertilizer use
 - Water use
 - Land use policies, including loss of natural habitat and open land

Pesticide Usage

- Pesticide use in turf became controversial in the mid-1980's
 - Over the years, much concerns has been raised by groups such as Public Citizens Watch, etc.
 - The PLCAA, USGA, and other organizations dispute claims made by these groups

Pesticide Safety

- "Safe" means something different to everybody
- All pesticides have some level of toxicity
- Risk depends on 2 things:
 - Product toxicity
 - Exposure


Pesticide Toxicity

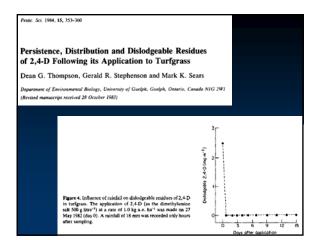
- LD₅₀ The lethal dose that is required to kill 50% of the test subjects
 - Rats are typically used to approximate human response
 - Measured in mg of substance per kg of tissue
 - The lower the LD₅₀, the more toxic the compound is, because less is required

Pesticide Toxicity

- One measure of product toxicity is the signal word on the label
 - Caution Ld₅₀ is >500 mg/kg
 - > Warning Ld₅₀ is 50-500 mg/kg
 - Danger Ld₅₀ is 0-50 mg/kg

Pesticide Toxicity		
Substance	Acute	Oral LD50 (rat) in mg/kg
Honey Bee Venom	More Toxic	2.8
Nicotine	•	10
Gasoline		50
Diazinon		100
Caffeine		200
2,4-D		666
Pendimethalin		1050
Aspirin		1200
Bleach		2000
Trimec Classic		2240
Table Salt	<u> </u>	3320
Roundup Pro	Less Toxic	5180

Exposure to Pesticides


- Another important factor is exposure
- On the product label, the section "Hazards to humans and domestic animals" gives an overview of the risks

Acute Exposure

- A spray tank usually contains relatively little active ingredient
 - > 4.5 lb of Trimec needed for an acre that's about 2084 grams
 - > A person who weighs 100 lbs (45 Kg) would need to ingest orally (45 Kg x 2240 mg/Kg) = 100.8 g (or all of the formulated spray applied to 2106 ft² – just over 4 gallons) to have a 50% chance of dying from acute exposure

Acute Exposure

- Dizziness, nausea, headaches due to exposure to vapors are more common
- Most product labels require a specific amount of time to elapse between application and reentry. During this time the pesticide residues dry and become bound to soil or plant tissue.

Chronic Exposure

- After the reentry period, research shows that very little of the pesticide residues will dislodge from the turf or soil onto socks or clothing
- This greatly reduces exposure, but does not eliminate it
- Which leads us to.....

The EPA

- The U.S. Environmental Protection Agency (EPA) is the primary federal agency regulating pesticides
- They require that pesticides undergo some 120 health, safety and environmental tests to assure that they do not cause undue harm.

The EPA

- EPA's tests evaluate the pesticide's potential to adversely affect humans, animals and the environment.
- Special attention is given to the pesticide's possible effects on humans with extra requirements for protecting children's health.
- It is a scientific process that takes an average of nine years.

Food Quality Protection Act

- FQPA was passed in 1996
 - > Primary driver of change in pesticide choices since the 1990's
 - > Widely supported at time of passage

Food Quality Protection Act

- Pesticide tolerances were reviewed by 2006
 - A tolerance is the limit set by the EPA on the amount of residue that can remain on a treated food
 - Application frequency, amount of pesticide applied and toxicity are considered

Food Quality Protection Act

- Wide margin of safety was required
 - > 100 X safety factor ensures that residues are many times lower than what could cause adverse effects
 - > Additional 10 X safety factor to address toxicity concerns in children

Food Quality Protection Act

- Contained a "Reasonable certainty of no harm" standard
 - > Also considered exposures sources other than food crops
 - Home and garden use
 - Turfgrass
 - Pet care
 - Residues in drinking water

Food Quality Protection Act

- All pesticides with the same mode of action are grouped when assessing risk
 - > Chlorpyrifos Dursban, Lorsban
 - > e.g. not just chlorpyrifos exposure, but exposure to all organophosphate and also carbamate insecticides was considered

Food Quality Protection Act

- When exposure was deemed too high
 - Primary registrant had several options
 - · Voluntary removal of product
 - Eliminate some uses

Food Quality Protection Act

- Overall goal of FQPA was sound
- Had important consequences in turfgrass
 management
 - > Initial reduction in labeled products
 - > New products have since been introduced

2,4-D and Cancer

• On August 8, 2007, the United States Environmental Protection Agency issued a ruling that stated that existing data does not support a conclusion that links human cancer to 2,4-D exposure.

The Bottom Line

- If used according to the label, registered pesticides are considered reasonably safe
- Follow label exactly
- Follow laws that govern pesticide application
 - > ODA Rules
 - New Rule on Pesticide Use in Schools

Pesticide Fate

- Several factors affect pesticide fate
- Several processes can occur to degrade a pesticide in the environment
- Fate in the environment is sometimes unique to a particular pesticide

Factors Affecting Pesticide Fate

- Chemical & physical properties of pesticides
 Solubility, sorptivity, vapor pressure
- Soil properties
 Porosity, organic matter content
- Site
 Shallow water table, near surface water
- Management

Leaching and Runoff

- Depends on site and interaction of the pesticide with soil solids
 - Runoff is more likely on slopes
 - > Leaching is higher in sand, lower in silt or clay
 - Some pesticides bind to soil more strongly

Sorption and Degradation

- Sorption pesticide binds to soil particles
- Pesticides are broken down by soil microorganisms and chemical means
 - Rate (½ life) affected by pesticide concentration, temperature, soil water content, and prior pesticide usage
 - > Degradation rates are quite variable

Pesticide Fate in Turf

- Organic carbon content of the soil
 - > Most important factor governing fate
 - High organic carbon content can attenuate movement of pesticide into soil
 - Increased sorption of pesticide
 - Increased microbial degradation

Summary

- Chemical properties and fate data from soil studies alone may not predict fate in turf
- Thatch will increase the degradation rate and reduce movement of immobile and moderately mobile pesticides
- Thatch may not have as much impact on more mobile pesticides

Pesticide Fate

- Most data supports responsible use of pesticides and fertilizers on turf
- Some data calls for change in management practices or product choice
- Challenge is for turf industry to make its case for responsible usage