Subsurface Drip Irrigation for Sports Turf

Bernd Leinauer New Mexico State Univ. Las Cruces, NM Mike Baron Toro Water Management Riverside, CA

Subirrigation

Reasons for not gaining market acceptance:

- Lack of urgency to conserve water
- Cost
- Considered to be "unproven" technology, resistance to change
- Technology predominantly for tees and greens (how much water can you conserve on 6 to 8 acres (2.5 to 3.5 ha) when 100 acres (40 ha) are irrigated?)
- Performance questionable on sloping design

Alternative Irrigation Methods

Goals:

- ✓ Ensure player safety
- ✓ Maintain (increase) turf quality
- Increase irrigation efficiency through improved water distribution
- Eliminate human exposure to irrigation water

Subsurface Irrigation

- Extensively used in agriculture
- Slow to reach acceptance in turf

For all the naysayers ...

The natural progression of a sprinkler system

SUBSURFACE DRIP IRRIGATION (SDI)

Wetting pattern

Wider (spacing) and deeper (placement) in finer soils

(Perceived) Challenges (1)

Planning / Installation	
Spacing / Depth	Water supply / Soil type / Grass
Lateral lengths (zoning)	Manufacturer Emitter spec (Label)
Root intrusion	Emitter design / Herbicide
Emitter clogging	Filtration

(Perceived) Challenges (2)

Establishment / Maintenance

Establishment from seed Proper timing

Establishment from sod

Granular fertilization

Salt build up / leaching

Aerification

Proper timing

Maintain soil moisture

Grass selection /

below drip lines

n.a./drip line depth/ root zone selection

Irrigation Uniformity

Irrigation Uniformity

- Sprinkler irrigation (DU > 0.75) resulted in more uniform soil moisture distribution (lower standard deviation values) when compared to drip irrigation on 13 out of 18 sampling dates.
- Water quality affected moisture uniformity on 15 out of 18 sampling dates. Saline irrigated plots had soil moisture distributed more uniformly than potable irrigated plots.

Performance / Longevity

No reduction in quality when turfgrasses were irrigated with potable water from a subsurface drip system over several years

- Schiavon, M., B. Leinauer, E. Sevostianova, M. Serena, and B. Maier. 2011. Warm-season turfgrass quality, spring green-up, and fall color retention under drip irrigation. Online. <u>Applied Turfgrass Science</u> doi:10.1094/ATS-2011-0422-01-RS.
- Schiavon, M., B. Leinauer, E. Sevostianova, and F. Rimi. 2010. Cool-season turfgrass performance under drip irrigation in an arid climate. <u>Proceedings</u> <u>2nd European Turfgrass Society Conference</u>:188-190.
- Leinauer, B. and D. Devitt. IN PRESS. Irrigation science and technology. In B. Horgan, J. Stier, S. Bonos (eds.) <u>Turfgrass Monograph</u>. ASA, CSSA, and SSSA, Madison WI.

Establishment of Warm and Cool-Season Grasses under Subsurface Drip and Sprinkler Irrigation

	Warm Season	Cool Season
Species	Bermudagrass 'Princess 77' Seashore paspalum 'Sea Spray'	Tall fescue 'Justice' Kentucky bluegrass 'Barduke'
Seeding	Mar and Jun 2008 and 2009	Sep 2009 and Oct 2010
Irrigation	Toro DL2000 MP Rotator / Toro Precision [™] Series 100% ETo	Membrane covered drip system (KISSS America) Toro Precision [™] Series 120% ETo
Water Quality	Potable Saline (1800 ppm, SAR 4.0)	

Subsurface Drip Irrigation

KISSS (Kapillary Irrigation Subsurface System)

Toro DL2000

October 15th

March seeded, saline and drip irrigated bermudagrass

June seeded, saline and drip irrigated seashore paspalum

Summary

- Early planting will establish warm season grasses quickly and successfully
- Saline water can be used in combination with sprinkler and subsurface drip irrigation for establishment (both seed and sod)
- Warm season grasses establish best under drip irrigation when seeded or sodded early

Schiavon, M., B. Leinauer, M. Serena, R. Sallenave, and B. Maier. 2012. Bermudagrass and Seashore Paspalum Establishment from Seed Using Differing Irrigation Methods and Water Qualities. Agron. J. 104: 706 – 714.

Summary (contd.)

- CS establishment was successful for both years
- Spacing between drip lines needs to be carefully evaluated
- Salinity problems may arise for CS grasses if subsurface drip is used with saline water

Schiavon, M., B. Leinauer, M. Serena, R. Sallenave, and B. Maier. 2013. Establishing tall fescue and Kentucky bluegrass using subsurface irrigation and saline water. Agron. J. 105:183-190.

Bermudagrass NTEP variety trial Subsurface drip irrigated with saline water

Summer 2009

Drip irrigation with saline water

Subsurface or Sprinkler?

Results

Cool season grasses

- Changes in soil EC, Na content, and SAR reflected seasonal changes in irrigation and natural precipitation
- Greatest EC and Na values were reached in June of 2006 on drip irrigated plots at depths of 0 – 10 cm
- Only tall fescue maintained acceptable quality when irrigated with saline water
- More than one stressor affected quality

Results

Warm season grasses

- EC, Na, or SAR did not affect turf quality
- Turf quality:
 Seashore paspalum > Princess 77, Riviera
- Drip irrigation resulted in earlier green-up than sprinkler irrigation but had no effect on summer quality or fall color retention

Sevostianova et al., 2011. Soil Salinity and Quality of Sprinkler and Drip Irrigated Warm-Season Turfgrasses. <u>Agronomy Journal 103</u>: 1773-1784

Ganjegunte et al., UNDER REVIEW

Fertilization

Courtesy Google Earth

Conclusions

- 1) Subsurface drip irrigation can be used to irrigate turf efficiently
- 2) also in combination with saline water
- 3) is a viable alternative to traditional sprinkler systems if installed, monitored, and maintained properly

Installation

Parking Lot Project

Filtration

Maintenance + Operation

Success Stories

Athletic Fields

Rio Rancho – The Vision

Coaches Requirements

- Do it right
- Best playing surface no artificial turf
- No sprinkler heads in playing areas
- Low mowing height
- Environmental and player friendly

Options Considered

Rehbein Environmental Solutions EPIC System

Drip Line Netafim or Toro DL2000

Decisions

- Drip line due to lower initial cost
- 'Riviera' bermudagrass Drought tolerant, cold tolerant, low mowing height, salt tolerant, seeded
- Infrastructure for future improvements (conduit for future lighting, accommodate future reclaimed water connection)
- Balanced grading plan (no import or export of soil)

Germination and growth from 7/1/08 to 11/2/08 (Partial first growing season)

Fertilization

System Design

Information

- 1. Water quality
- 2. Pressure
 - preferably between 15 and 30 psi
- 3. Flow rate & pressure
 - important to determine maximum lateral length of drip lines

SUBSURFACE DRIP IRRIGATION (SDI)

Typical design:

- 4" (10 cm) depth
- 1' (30 cm) spacing

SUBSURFACE DRIP IRRIGATION (SDI)

Control valve

Pressure regulator

Header line

System Design

Calculation of maximum lateral length:

- Supply flow rate S_f: 20 gpm
- Emitter flow rate $E_f: 0.5 / 0.9$ gph
- Emitter spacing E_s: 12" / 18" / 24"

$$MLL = \frac{S_f(gph)}{E_f(gph)} \bullet E_s(ft) = \frac{20 \bullet 60gph}{0.5gph} \bullet 1ft = 2400ft$$

Installation

Length of Run Charts

5/8" (0.620" ID / 0.710" OD)			Inlet pressure vs. Max length of run in Feel			
part number	flow rate	emitter spacing	15 psi	25 psi	30 psi	40 psi
RPG212	.53 gph	12*	250'	360'	400/	460'
RPG218	.53 gph	18"	350'	515'	565	650"
RPG224	.53 gph	24"	4507	650/	720/	825'
RPG412	1.0 gph	12*	160'	240'	260	300'
RPG418	1.0 gph	18"	240'	340'	375/	430'
RPG424	1.0 gph	24*	300'	425'	475'	540'

Emitter

Summary

Dos

- + Do it right the first time (don't use lowest bidder)
- + Use experienced contractor and a product that is specified for turf
- + Design (zoning) should follow soil test
- + Turtle back design
- + ONE filtration system for the entire system (preferably sand filter)
- + Grounds manager needs to be involved
- + Automatic AND manual flush valve for each zone
- + Fertilizer injection system

Summary

- Cut-rate installations
 (you get what you pay for)
- Cross connections
- Crowning
- One filter for each zone (valve)