Infield Mixes – The Science Behind the Art

Dr. Norman Hummel Hummel & Co. Inc. www.turfdoctor.com

Goals

- To understand testing behind infield and pitcher's mound mixes
- To learn how soil texture influences performance, including water retention
- To understand that there are different types of clays
- Evaluate amendments for increasing water retention

Outline

- What makes up infield mixes, how they are tested
- Types of clay
- Water retention in infield mixes

Where to Find Guidelines

- Distributors
- ASTM F2107 Standard Guide for Construction and Maintenance of Skinned Areas on Baseball and Softball Fields
 - 19 40% silt and clay, specify sand size. no minimum clay, no silt to clay ratio
- University of Missouri
 - 60-20-20 (sand silt clay)
 - 50-20-20-10 (sand silt clay calcined clay)

Soil Texture

- Division of soil particles according to size: sand, silt, clay.
- Textural classes determined by percentage of each.
- Influences physical properties of the soil: porosity, playability, compressibility, water retention, and drainage characteristics.

Soil Texture

- Gravel > 2 mm
 - Minimize amounts. No value to infield mix.
- Sand 0.05 2 mm.
 - Main component of infield mix
 - Sand size matters
- Silt 0.002 0.05 mm
 - Least desirable
- Clay < 0.002 mm
 - Second in quantity, major influence on performance

Jar Test

Particle Size Analysis ASTM F1632

Dry samples are weighed

 Dispersant added (sodium polyphosphate)

Particle Size Analysis - Drying

Particle Size Analysis - sieving

Hummel & Co., Inc. • 35 King Street • P.O. Box 606 • Trumansburg, New York 14886 • Phone: (607) 387-5694 • Fax: (607) 387-9499 • Web Site: www.hummelandco.com

BALL DIAMOND MIX TEST REPORT FOR MLB Field

REPORT TO: client name DATE RECEIVED: March 16, 2012

client address
client address
client address
Client address
CONDITION OF SAMPLE: Normal

PARTICLE SIZE ANALYSIS (ASTM F-1632)

Lab ID No.		Gravel		So	Soil Separate		Sieve Size/Sand Fraction Sand Particle Diameter % Retained				
	Sample	No. 5	No. 10 2 mm	Sand	Silt	Clay	No. 18 V. coarse 1 mm	No. 35 Coarse 0.5 mm	No. 60 Medium 0.25 mm	No. 140 Fine 0.10 mm	No. 270 V. fine 0.05 mm
30535-1	Sample A	0.0	1.2	63.1	15.6	21.3	6.0	19.1	27.0	9.3	1.7
30535-2	Sample B	0.1	2.0	62.3	17.0	20.4	4.2	19.5	25.5	11.2	2.0
Hummel & C	Co, Guidelines ¹	≤3	3%	65 - 75		≥ 10%				The Transition	

¹ In addition, a silt to clay ratio of less than 1.

PARTICLE SHAPE/TEXTURAL CLASS /COLOR/SCR

Lab ID No.	Sample	Silt to clay ratio	Color	Textural Class	
30535-1	Sample A	0.73	7.5YR 5/4 Brown	Sandy clay loam	
30535-2	Sample B	0.83	7.5YR 5/4 Brown	Sandy clay loam	

Page 1 of 2. This report may not be reproduced except in full, without written permission from Hummel & Co. Inc.

Hydrometer Method

Hummel & Co., Inc. • 35 King Street • P.O. Box 606 • Trumansburg, New York 14886 • Phone: (607) 387-5694 • Fax: (607) 387-9499 • Web Site: www.hummelandco.com

BALL DIAMOND MIX TEST REPORT FOR MLB Field

REPORT TO:

client name

DATE RECEIVED: December 26, 2012

client address

TEST DATE:

December 26 - January 4

client address client address REPORT DATE: CONDITION OF SAMPLE: Normal

January 4, 2013

PARTICLE SIZE ANALYSIS (ASTM D-422)

Lab ID			avel	Soil Separate %			Sieve Size/Sand Fraction Sand Particle Diameter % Retained				
	Sample	No. 5	No. 10 2 mm	Sand	Silt	Clav	No. 18 V. coarse 1 mm	No. 35 Coarse 0.5 mm	No. 60 Medium 0.25 mm	No. 140 Fine 0.10 mm	No. 270 V. fine 0.05 mm
32021-1	Infield Mix	0.0	4.7	61.9	15.4	22.7	10.4	12.9	23.1	13.2	2.3
Hummel	& Co. Guidelines ¹	0%	≤3%	65 - 70		≥ 10%					

¹ In addition, a silt to clay ratio of less than 1.

SCR/COLOR/TEXTURAL CLASS

Lab ID No.	Sample	Silt/Clay Ratio	Color	Textural Class	
32021-1	Infield Mix	0.68	7.5 YR 5/4 Brown	Sandy clay loam	

Page 1 of 2. This report may not be reproduced except in full, without written permission from Hummel & Co. Inc.

% Stones	% +3"	% Gravel			% Sand					% Silt		N/ DI
		Coarse	Medium	Fine	V. Crs.	Crs.	Med.	Fine	V. Fine	Crs.	Fine	% Clay
0.0	0.0	0.0	0.0	0.0	10.4	12.9	23.1	13.2	2.3	2.3	13.1	22.7

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#18	89.6		
#35	76.7		
#60	53.6		
#140	40.8		
#200	39.1		
#270	38.2		
0.0354 mm.	37.7		
0.0225 mm.	36.0		
0.0130 mm.	35.1		
0.0093 mm.	33.4		
0.0067 mm.	31.3		
0.0032 mm.	26.5		
0.0026 mm.	24.8		
0.0015 mm.	20.0		

$D_{50}^{50} = 0.2167$ $D_{30}^{50} = 0.0054$ $D_{15}^{50} = 0.0054$ $C_{c}^{50} = 0.0054$	Infield Mix	Soil Description	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PL=		PI=
USCS= AASHTO=		$D_{85} = 0.7342$	D ₆₀ = 0.3051 D ₁₅ = C _c =
Remarks	USCS=)=
ASTM D422	ASTM D422	Remarks	

Date: 1/11/13

⁽no specification provided)

INFIELD GUIDELINES

Pro

Water Access

Maintenance

- Regular/Daily
- ☐ Limited
- □ Volunteer

SAND (overall) 58-65%

SAND (medium) 38-45%
(of total mix)

SILT & CLAY 35-42%
(Combined)

SCR 0.5 – 1.0
(Silt ÷ Clay)

Major / Minor League Ballparks, Division I Colleges/Universities

INFIELD GUIDELINES

Intermediate

Water Access

Maintenance

- ☐ Regular/Daily
- ☑ Limited
- □ Volunteer

Most Colleges/Universities, Some High Schools, Some Complexes

INFIELD GUIDELINES

Recreational

☐ Water Access

Maintenance

- ☐ Regular/Daily
- ☐ Limited
- **✓** Volunteer

Most Schools, Most Parks

 SAND (overall)
 70-75%

 SAND (medium)
 >50%

 (of total mix)
 25-30%

 (Combined)
 0.5 - 1.0

 (Silt ÷ Clay)

What's In Professional Fields?

	Sand	Silt	Clay	Silt/Clay Ratio
The Big Leagues - MLB				
Average	60.1	18.7	21.2	0.9
Range	50.3 - 70.7	9.6 - 26.1	15.7 – 24.8	0.48 - 1.38
AAA, AA, Training Facilities				
Average	63.6	18.6	17.8	1.05
Range	52.5 - 80.0	9.3 - 34.7	4 - 20.3	0.65 - 8.68

What's In Collegiate, Schools, and Municipal Fields?

	Sand	Silt	Clay	Silt/Clay Ratio
Collegiate Fields				
Average	66.2	21.2	12.5	4.27
Range	61 - 78.2	8.9 - 38.7	1 - 27.1	0.53 - 20.9
Schools and Parks				
Average	65.1	27.9	7.0	4.9
Range	38 - 77.2	14.1 – 42.5	1.9 – 19.8	0.7 - 11

Clay – what is it?

- Secondary mineral byproduct of weathering of primary rocks and minerals.
- Defined by size < 2 μ
 - Microscopic to sub-microscopic in size
- High surface area
- Plastic qualities

Octahedral sheet

Tetrahedral sheet

Tetrahedral sheet

Octahedral sheet

Tetrahedral sheet

Unexpanded Clay (Dry)

Expanded Clay (Wet)

Types of clays - groups

- Kaolin
 - 1:1 crystal lattice, non expanding
- Illite
 - 2:1 crystal lattice, usually marine origin
 - Non-expanding because of potassium between lattices
- Montmorillite/Smectite
 - 2:1 crystal lattice, Mg substitute for 1/8 of Al, causes negative charge
 - Highly expansive on wetting, shrinks on drying
 - Very sticky when wet, hard clods when dry

Types of clays - Groups

- Chlorite
 - 2:1 Lattice, but non-expanding.
 - Cations (Fe, Mn, Ni, or Mg) sandwiched between 2:1 lattices
- Sequioxides
 - Oxides and hydroxide compounds of Fe and Al.
 - Maybe crystalline or amorphous
 - Red (hematite) or yellow (limonite) in color

Kaolinite Illite-smectite 4FM 20KU 026 17

Clay Makeup of Two Infield Mixes

X-Ray Diffraction of Clays

Clay Makeup of Two Infield Mixes

	% of Mineral in Infield Mix		
Mineral	Northern Clay	Southern Clay	
Mixed Layer Illite/Smectite (70-30)	46.1%	0.0%	
Illite & Mica	16.2%	3.2%	
Kaolinite	13.0%	38.4%	
Chlorite	11.1%	33.8%	
Quartz	6.8%	11.8%	
Calcite	1.3%	0.0%	
Hematite	0.0%	12.8%	
Pyrite	5.5%	0.0%	

Clays – take home message

- That there are different types of clays with distinct properties.
- Unknown which are best suited for infield mixes or mound clays
- The art of infield mix maintenance

Infield Mixes and Water Retention

- Why is this important?
- Want to maintain optimum moisture content
 - Cleat in, cleat out clean
- Want to maintain optimum moisture content for duration of game (ideally)

Infield mixes and water retention

- Forces acting on water in infield mix
 - Gravity
 - Matric or surface forces
 - Attraction of water to surfaces (adhesive forces)
 - Attraction of water molecules to each other (cohesive forces)

Water held by surface tension on the particles against the force of gravity

Infield mixes and water retention

- Water content
 - Actual amount of water held in the soil
 - Expressed as percent by weight or volume

- Water potential
 - The amount of energy required to removed water from the soil.
 - Measure of strength of capillary forces holding water in the soil.

Texture, Water Content and Water Potential

Higher surface area and negative charge of clays means more water is held onto tighter...a little clay goes a long way!

Water Retention of Mixes

- Water retention at 1/10 bar
 - 2 psi
 - Field capacity
- Water retention at 15 bars
 - 220 psi
 - Permanent wilting point

Water retention of infield mixes

Sand	Silt	Clay	Silt/clay Ratio	Water content at 1/10 bar	Water content at 15 bars	% of water loss
68.2	10.3	21.5	0.48	17%	10%	41%
66.5	27.5	6.0	4.6	13%	3%	77%
70.7	9.6	19.7	0.49	29%	8%	72%
50.3	26.1	23.6	1.11	46%	17%	63%
58.3	19.1	22.5	0.85	19%	8%	58%
62.5	23.1	14.4	1.60	31%	12%	61%

Water Retention in Infield Mixes

- Function of:
 - Sand content
 - Sand size
 - Clay content
 - Clay type
 - Silt to clay ratio?
 - All of the above

Increasing Water Retention In Infield Mixes

- Decrease sand content
- Increase clay, reduce silt to clay ratio
- Calcined clay products
- Hydrogels

Conclusions

- MLB infield mixes are predominately sandy clay loams with silt to clay ratios slightly less than 1.
- Good Infield mixes can fall into sandy loam class.
- Different types of clays are likely to perform differently
- Different methods can be used to evaluate infield mixes for particle size:
 - Pipette
 - Hydrometer better for high clay mixes
 - Jar test really??

Conclusions (general)

- Mixes with higher clay (and silt) had higher water retention
- Mix high in calcined clay held water at lower tensions,
 but released it as the mix dried out
- Testing technology may exist to design mixes with amendments that have higher and more durable water retention capacities.

