Optimizing sprinkler uniformity with an irrigation audit

Jeff Gilbert The University of Arizona

outline

- Reasons for conducting an audit
- Precipitation & precipitation rate
- System optimization

Why?

- Player safety
 - More consistent/predictable field conditions

Turfgrass Health

• Reduce biotic & abiotic plant problems

*there really isn't any 100% abiotic problems

- Minimize areas that are too wet or too dry
 - Limit operating cost associated with pumping

Avoid runoff

Maximize Distribution Uniformity - DU

NEXT SPRINKLER OVER ENTIRE AREA.

How?

Calibration

- Similar to fertilizer spreader of sprayer
 - All calibration basically uses the same calculations
 - All have AREA in common.
 - To determine rate include time.
- Sprinkler system used much more often than either spreader or sprayer

Fertilizer Spreader

Product (pounds) per area (ft²)

* Swath width important for even distribution

• Gallons per area (ft²)

Operating pressure is an important factor

Swath width important for even distribution

Nozzle size and spacing important

Calibrate Irrigation System

Operating pressure

Why Calibrate?

Applying Water to Turf

- Only real reason for having a sprinkler system
- This is "where the rubber meets the road"
- More important than:
 - 'smart' controller
 - Rain sensor
 - Getting ET from a satellite

Precipitation

- Gross Precipitation
 - Total amount of water applied over a given area.

$$inches depth = \frac{1.604 \times gallons}{ft2}$$

$$1.604 = \frac{ft3}{7.48gal.} x \frac{12in.}{ft} x \frac{1}{ft2}$$

example

• Given:

Football field plus surrounding turf

or 84700 square feet (ft2)

Measured volume through meter

= 10,000 gallons

Average applied depth over entire field

 \cong 0.19 inches

$$0.19" = \frac{1.604 \times 10,000}{84700 \, ft \, 2}$$

10 | 5 | 0 | 2 | 0 | 4 | 0 | 3 | 0 | 5 | 0 |

10 20 30 40 50 40 30 20

Average Depth Gross Precipitation Rate for entire field

• Doing this type of calculation is useful for budgeting but offers little help for scheduling irrigation or improving overall distribution of water.

Example 2

• Given:

Baseball turfgrass infield (usually a single irrigation zone)

= 80' x 80' or 6400 ft²

Measured volume through meter

= 750 gallons

Average applied depth for this zone

$$0.19" = \frac{1.604 \times 750 \, gal.}{6400 \, ft2}$$

Gross precipitation for single zone

- This is a useful measurement and can be helpful for scheduling irrigation. But this is still 'gross' precipitation and does not account for water losses between the meter and the turf.
- Not precipitation rate
- Does not show how the water is distributed over the field/zone.

Precipitation Rate

- Rate at which a sprinkler system applies water to a given area.
- Precipitation rate for a system is the average precipitation rate of all sprinklers in a given area regardless of the arc, spacing, or flow rate of each head.
- PR is a function of the total sprinkler discharge applied to the area between the sprinklers.

Head-to-head

Full-Circle (360°)

$$IPH = \frac{96.3 \times GPM}{Ft2}$$

$$96.3 = \frac{ft3}{7.48gal.} \times \frac{60 \,\text{min.}}{hour} \times \frac{12inches}{foot}$$

• This is used to determine gross precipitation rates

IPH Square Spacing

$$iph = \frac{96.3 \times gpm}{Row \times sprinkler}$$

Total area equivalent to full-circle sprinkler or 360° 90° + 90° + 90° +90°

Example

- Each sprinkler has a flow rate of 14 gpm
- Spacing between sprinklers is 6o'
- Spacing between rows is 6o'
 - square spacing

$$iph = \frac{96.3 \times 14}{60 \times 60} = 0.37'' / hour$$

IPH Triangular Spacing

$$iph = \frac{96.3 \times gpm}{Row \times 0.866 \times sprinkler}$$

Total area equivalent to full-circle sprinkler or 360° $60^{\circ} + 120^{\circ} + 60^{\circ} + 120^{\circ}$ $0.866 = \text{sine of } 60^{\circ}$

Example

- Each sprinkler has a flow rate of 14 gpm
- Spacing between sprinklers is 6o'
- Spacing between rows is 52' (60'xo.866)
 - triangle spacing

$$iph = \frac{96.3 \times 14}{60 \times 52} = 0.43'' / hour$$

Why is the precipitation rate higher with triangle spacing?

1-40 DUAL OPPOSING NOZZLE PERFORMANCE DATA

I-40 Dual Opposing Nozzle Performance Data

Nozzle	Pressure (PSI)	Radius (ft.)	Flow (GPM)	Precip in/hr	
					•
15	50	52	13.0	0.46	0.53
	60	54	13.2	0.44	0.50
	70	56	14.4	0.44	0.51
	80	57	15.5	0.48	0.53
18	50	58	13.7	0.39	0.45
	60	59	15.2	0.42	0.49
O	70	60	16.6	0.44	0.51
Red	80	62	17.8	0.45	0.51
20	60	63	19.1	0.46	0.53
	70	64	20.9	0.49	0.57
0	80	66	22.3	0.49	0.57
Dk. Brown	90	66	23.9	0.53	0.61
23 Dk. Green	60	65	20.4	0.46	0.54
	70	68	22.3	0.49	0.57
	80	67	24.0	0.51	0.59
	90	68	25.6	0.53	0.62
25	60	66	22.0	0.49	0.56
	70	68	24.0	0.50	0.58
0	80	69	25.9	0.52	0.60
Dk. Blue	90	70	27.2	0.53	0.62
28	70	70	28.9	0.57	0.66
	80	72	30.9	0.57	0.66
©	90	74	32.9	0.58	0.67
Black	100	78	33.7	0.58	0.65

^{*} Factory-installed nozzle

Note: All preciptation rates calculated for 180-degree operation.

For the precipitation rate for a 360-degree sprinkler, divide by 2

Precipitation rates for the 36S model are calculated at 360 degrees.

I-40 Dual Opposing Nozzle Performance Data

Nozzle	Pressure PSI	Radius ft.	Flow GPM	Precip in/hr	
15 Gray	50	53'	13.0	0.45	0.51
	60	54'	14.3	0.47	0.55
	70	56'	15.5	0.48	0.55
	80	58'	16.3	0.47	0.54
18 Red	50	60'	15.3	0.41	0.47
	60	61'	16.3	0.42	0.49
	70	62'	17.3	0.43	0.50
	80	64'	18.8	0.44	0.51
20 Dk. Brown	60	66'	18.8	0.42	0.48
	70	67'	20.0	0.43	0.50
	80	68'	21.5	0.45	0.52
	90	68'	22.4	0.47	0.54
23 Dk. Green	60	67'	21.5	0.46	0.53
	70	68'	23.0	0.48	0.55
	80	69'	25.1	0.51	0.59
	90	70'	26.0	0.51	0.59
25 Dk. Blue*	60	68'	21.0	0.44	0.50
	70	70'	25.0	0.49	0.57
	80	72'	26.2	0.49	0.56
	90	74'	27.2	0.48	0.55
©28 Black	70 80 90 100	72' 74' 76' 78'	26.7 27.9 30.1 32.0	0.50 0.49 0.50 0.51	0.57 0.57 0.58 0.58

A couple Practice Problems

Precipitation applied to a zone

What would be the total gallon flow for a 10 minute run from all sprinklers? What is the total depth applied?

Whole Zone Precipitation

$$1.4gpm \times 4Q = 5.6gpm$$

$$2.9gpm \times 8H = 23.2gpm$$

$$5.5gpm \times 3F = 16.5gpm$$

$$45.3gpm \times 10 \min = 453gallons$$

5.6 + 23.2 + 16.5 = 45.3

"
$$depth = \frac{1.604 \times 453 gal}{112' \times 58'} = 0.11$$
"

Calculate the Precipitation Rate for an entire zone

Whole zone precipitation rate

$$1.4gpm \times 4Q = 5.6gpm$$

$$2.9gpm \times 8H = 23.2gpm$$

$$5.5gpm \times 3F = 16.5gpm$$

$$5.6 + 23.2 + 16.5 = 45.3$$

$$112' \times 58' = 6496 ft 2$$

$$\frac{96.3 \times 45.3}{6496 \, ft \, 2} = 0.67'' / hr.$$

Run Time

• How many minutes would be needed to apply 0.25"?

$$\frac{60\,\mathrm{min.}}{hour} \times \frac{hour}{0.67"} \times 0.25"$$

$$\frac{60(\min)}{h\phi ur} \times \frac{h\phi ur}{0.67^{1/2}} \times 0.25^{1/2} = 22.4 \, \text{min}.$$

So, What is the precipitation rate

for a baseball infield?

- Each 360° sprinkler has a flow rate of 14 gpm
- Spacing between sprinklers is 8o'
- Spacing between rows is 8o'
 - Square spacing?

$$iph = \frac{96.3 \times 14}{80 \times 80} = 0.21'' / hour$$
 $iph = \frac{96.3 \times 7}{80 \times 80} = 0.11'' / hour$

Probably somewhere between these two values – need to test

Gross precipitation rates

- All ideal values
 - no actual measure of real distribution
- All water is assumed to reach the turf
- Pressure at each nozzle all as designed and all the same
 - Differences in nozzle pressure can vary iph significantly
- Turf area covered by any sprinkler or zone assumed.
 - Also based on ideal operating pressure
- Every sprinkler level & to-grade
- All spacing installed/maintained as designed

Net Precipitation

- Net
 - Measure of the amount of water that actually reaches the landscape.
 - The net precipitation rate is the gross precipitation rate minus the losses that occur between the sprinkler and the landscape surface.
 - The real deal

How?

 Use catchment devices to determine actual precipitation rates

Determine the precipitation rate of a baseball outfield

- Each zone surrounded by other zones
- Spacing, pressure all variable
- Arcs mixed

Baseball Field Has both Triangle & Square spacing, full and part-circle arcs

How?

- Arrange catch cups in grid pattern
- Usually measure along 3rd base line
- Want to have at least 3 cups between each sprinkler
 - For 60' head spacing, the cups would need to be about 15' to 19' apart

The number of cups used depends on desired detail

Catch cup Grid

Need ~250+ cups

Start with one zone

Operate zone for 15-20 minutes, or more

More realistic coverage

Overlap coverage

Catch cups covered by single zone

- Record catch volumes from single zone
- Mark cups that get water from this single zone
- Identify all adjacent zones that contribute water to this first zone area
- Operate each adjacent zone for the <u>same time</u> used on first zone
- Record catch values from all other adjacent zones

First Adjacent Zone

Second Adjacent Zone

Third Adjacent Zone

Fourth Adjacent Zone

Fifth Adjacent Zone

Sixth Adjacent Zone

Why include all surrounding zones?

- Just like all precipitation rates covered earlier.
- Coverage needs to add up to an even multiple of 360° if truly head-to-head spacing
- Independent of whether spacing is square or triangle

All contributing zones

$$4 \times 360 \circ = 1440 \circ$$
 $3 \times 180 \circ = 540 \circ$
 $3 \times 180 \circ = 540 \circ$
 $3 \times 180 \circ = 540 \circ$
 $1 \times 180 \circ = 180 \circ$

Or, 10 full-arc sprinklers

Combine all catch volumes

- Add catch cup values together, cup by cup
- Get average
- Determine precipitation rate
- Then, REPEAT with all other zones.
 - For example

Sta.#	1	2	3	4	5	6	7	8	9	10	11	12
IPH	0.71	0.81	0.57	0.71	0.59	0.65	0.56	0.46	0.59	0.66	0.71	0.59

Surface plot of catch cup data

The reason for placing cups on a grid pattern

Football field with mixed sprinkler spacing & arcs

And, now can include <u>Calibration</u> when repairing these items to improve DU

- Misaligned sprinklers
- Tilted sprinklers
- Improper pressure
 - High or low
- Non-rotating sprinkler
- Blocked spray pattern
- Low head drainage
- Missing sprinklers
- Improper spacing
- Clogged nozzles

- Leaks in laterals or main
- Incorrect pipe size
- Inadequate flow
- Slow valves
- Mixed nozzles
- Damaged nozzles
- Matched precipitation
 - At least w/in zone
- Mixed brands

Benefits of zone-by-zone calibration

- Apply desired depth at each irrigation event
 - Very difficult to determine IPH on baseball field
 - Do not rely on catalog iph values for scheduling which can result in deficit irrigation
- Increase overall DU & player Safety

end

Thank You

