## Topdressing with compost, a more sustainable and affordable alternative

Marcela Munoz Dept of Horticulture and Crop Science The Ohio State University Columbus, Ohio, USA January 13, 2011 (email: munoz.42@buckeyemail.osu.edu)

## **SUSTAINABILITY**

"Meeting the needs of the present generation without compromising the ability of future generations to meet their needs"\*

*"Using methods, systems, and materials that won't deplete resources or harm natural cycles"* 

*"Sustainability is not a trend as waste management is too expensive*"

It's a movement in our society

Been sustainable
Go-Green
Eco-friendly

Crystal Ball Report #29. Green Industry ECOnomics: Innovating Toward a Sustainable and Profitable Future. Planet 2009. \*Brundtland, 1987

## COMPOST

## What is COMPOST?



# **Compost** : is the end result of controlled aerobic decomposition of organic matter

### **Compost QUALITY varies depending on**



## **THE SOURCE**

- Municipal solid waste (household refuse)
- Leaves and grass clippings (yard waste)
- sewage sludge (biosolid)
- Animal manure
- Food residuals
- etc



#### Properties of yard wastes before composting

| Characteristics      | Grass      | Fall<br>Leaves | Spring<br>Leaves | Chipped<br>Brush |
|----------------------|------------|----------------|------------------|------------------|
| Organic<br>matter(%) | 86(+-5)    | 87(+-4)        | 58 (+- 6)        | 98(+-1)          |
| pH                   | 8.1(+-0.1) | 5.9(+-0.4)     | 7.9(+-0.3)       | 6.6(+-0.2)       |
| Carbon (%)           | 41         | 42             | 33.2             | 46.9             |
| Nitrogen (%)         | 2.6        | 0.8            | 1.2              | 1                |
| C/N ratio            | 16         | 54             | 28               | 49               |

Adapted from Fred Michel presentation at the Ohio Composting Operator Educational Course, Wooster, Ohio, 2010.

N losses during composting are correlated to the initial C/N ratio

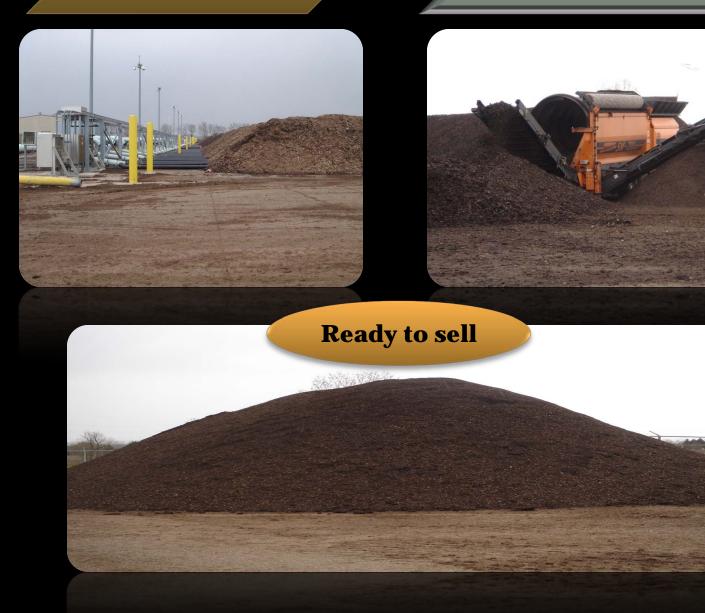
## **COMPOSTING PROCESS**

Biological process

•Organic wastes are <u>stabilized</u> and <u>converted</u> into a product to be used as a soil conditioner and organic fertilizer

## **COMPOSTING SYSTEM**




# An example : Sewage sludge composting process





#### Aerate Compost for 25 days

## Screen compost to 3/8 in mesh



## Benefits of using compost in sports turf

Soil physical, chemical, and biological properties improvements

Environmental benefit

- Soil structure is improved (micro-macro aggregates)
- Improved aeration and plant root development
- Nutrients, N available in slow release form
- Water holding capacity increased
- Erosion reduce
  - Prevention and suppression of disease
- Organic matter recycling
- Less landfill wastes.
- Carbon sequestration (capture)
- Fertilizers, pesticides, and herbicides decrease.
  - Decrease in N leaching (surface water)

## **Disease supression**

| Pathogen species        | Inoculum | Disease          | Main compost feedstocks    | Control<br>medium | Rate (%, v/v) | Rate (t<br>d.m./ha) | Control* (%) | References               |
|-------------------------|----------|------------------|----------------------------|-------------------|---------------|---------------------|--------------|--------------------------|
| Laetisaria fuciformis   | natural  | Red thread       | Sewage sludge              | sand              | 20            |                     | 51           | Nelson and Boehm (2002a) |
| Laetisaria fuciformis   | natural  | Red thread       | Green waste                | sand              | 20            |                     | 0            | Nelson and Boehm (2002a) |
| Microdochium nivale     | mycelium | Fusarium patch   | Bark, poultry manure       | soil              |               | 4.9                 | 64           | Boulter et al. (2002b)   |
| Microdochium nivale     | mycelium | Fusarium patch   | Bark, poultry manure       | soil              |               | 9.7                 | 84           | Boulter et al. (2002b)   |
| Pythium graminicola     | natural  | Damping-off      | Sewage sludge              | sand              | 20            |                     | 63           | Nelson and Boehm (2002a) |
| Pythium graminicola     | mycelium | Damping-off      | brewery and sewage sludges | sand              | 30            | 0.5                 | 72           | Craft and Nelson (1996)  |
| Rhizoctonia solani      | natural  | Brown patch      | sewage sludge              | sand              | 20            |                     | 42           | Nelson and Boehm (2002a) |
| Rhizoctonia solani      | natural  | Brown patch      | Green waste                | sand              | 20            |                     | 39           | Nelson and Boehm (2002a) |
| Rhizoctonia solani      | mycelium | Large patch      | Grass clippings            | soil              | 10            |                     | 47           | Nakasaki et al. (1998)   |
| Sclerotinia homoeocarpa | natural  | Dollar spot      | sewage sludge              | nil               | 30            | 5                   | 27           | Nelson and Craft (1992)  |
| Sclerotinia homoeocarpa | mycelium | Dollar spot      | Bark, poultry manure       | nil               |               | 7.2                 | 50           | Boulter et al. (2002c)   |
| Sclerotinia homoeocarpa | mycelium | Dollar spot      | Bark, poultry manure       | nil               |               | 14.7                | 66           | Boulter et al. (2002c)   |
| Sclerotinia homoeocarpa | natural  | Dollar spot      | sewage sludge              | sand              | 20            |                     | 40           | Nelson and Boehm (2002a) |
| Sclerotinia homoeocarpa | natural  | Dollar spot      | Green waste                | sand              | 20            |                     | 5            | Nelson and Boehm (2002a) |
| Typhula incarnate       | natural  | Blight snow mold | sewage sludge              | sand              | 20            |                     | 70           | Nelson and Boehm (2002a) |
| Typhula ishikariensis   | mycelium | Blight snow mold | Bark, poultry manure       | soil              |               | 4.9                 | 39           | Boulter et al. (2002b)   |
| Typhula ishikariensis   | mycelium | Blight snow mold | Bark, poultry manure       | soil              |               | 9.7                 | 82           | Boulter et al. (2002b)   |

Adapted from Noble et at, 2005.\*Control is expressed as percentage reduction in disease symptoms compared with unamended turf grass or turf grass treated with sand d.m., dry matter.

#### Advantages depending on the soil profile

#### IN CLAY SOILS

Improve structure
Reduce surface crusting
Reduce compaction
Promote drainage
Provide nutrients

#### IN SANDY SOILS

Increase water and nutrient retention
Supplies nutrients
Increase microbial
activity

## **General uses and recommendations**

#### As topdressing

- Find the right <u>equipment</u>
- Thin layer (about <sup>1</sup>/<sub>4</sub> 1/8)
- Work it into the soil
- Aeration with hollow tines
- Heavy drag mat attached
- Better during cool-moist seasons

#### **Incorporate in the soil**

- Between 1 2 in layer
- Depth 4-6 in
- Mix with the soil
- Rotary tilling equipment, depending on soil
- For seedling growth some compost may need additional P and K
- Check pH and soluble salts

# How to select a compost to use in turfgrass?

- You should choose a compost that have been tested by some university, company or a colleague
- You must require the physical and chemical analysis of compost. Or you can send a sample to a laboratory.
- If you don't have any of these options, make a visual analysis

#### COMPOST ANALYSIS REPORT

#### LAB NO.: 618570 SAMPLE ID: KURTZ BROS. YARDWASTE COMPOST JUNE 2010

TEST PACKAGE: OHIO EPA COMPOST TESTS (OEPA 3745-27-46)

| TEST                 | RESULTS | UNITS    |
|----------------------|---------|----------|
| pН                   | 8.5     | SU       |
| Salinity             | 0.70    | mS/cm    |
| Total Nitrogen       | 1.13    | % dw     |
| Total Organic Carbon | 9.40    | % dw     |
| Total Phosphorus     | 2,120   | mg/kg dw |
| Total Potassium      | 7,600   | mg/kg dw |
| Total Boron          | 50.9    | mg/kg dw |
| Foreign Matter       | 0.039   | % dw     |

TEST METHOD: Conforms to Ohio EPA Analytical Methods given in Table 4 and Table 5.



## Choosing a compost, desirable physical and chemical properties

| Color                         | Brown to black                                                                 |  |  |
|-------------------------------|--------------------------------------------------------------------------------|--|--|
| Odor                          | Like earth                                                                     |  |  |
| Particle size for topdressing | <sup>1</sup> / <sub>4</sub> to 3/8 inch                                        |  |  |
| Moisture content              | 30 to 50%                                                                      |  |  |
| Organic matter                | Greater than 30%                                                               |  |  |
| Ash content                   | less than 70%                                                                  |  |  |
| C/N ratio                     | Below or equal to 30:1                                                         |  |  |
| Nitrogen                      | 0.5 to 3%                                                                      |  |  |
| Phosphorus                    | Greater than 0.2%                                                              |  |  |
| рН                            | 6.0-7.0                                                                        |  |  |
| Metals                        | Determined by state or federal agencies                                        |  |  |
| Soluble salts                 | Depending on turf species, type of salt, concentration, and application method |  |  |

PennState agricultural science. Using Compost to improve turf performance. http://turfgrassmanagement.psu.edu/composts.html



#### Madison Golf and Development Group, Wisconsin, USA

Composting program (they produce certified yard waste compost) for bentgrass fairways and tees, and Kentucky bluegrass roughs Compost Application

> Twice a year in all tees, fairways and roughs at 2 Golf Courses Spring and fall at 1/8 inch

Equipment: broadcast spreader (1 day =150 acres)

#### **Benefits:**

Increase soil stability Reduced severity and incidence of

diseases

Less weeds

Less insects

**Decreased thatch** 

Reduced annual fertilizer by 90% Reduced other chemical inputs by 50% Cost savings +

Marketing in a region where environmental issues are a hot topic

## Morecambe FC, Lancashire, England (3<sup>rd</sup> division)

Establishment 50:50 sand/compost mix

Germination of the dwarf ryegrass was very quick

Increased in density and root growth

Decreased irrigation and fertilization



Worthington Schools, Columbus, Ohio, USA

488,330

T TOTAL DOCT

More than 20 years applying an 80/20 sand/compost mix (biosolid compost). Reduced fertilizers by 30%

## Why it can be an affordable alternative?

| 2009 New Soccer Field Maintenance C                                                                 | 114                                                                                   |                     |                  |              |                     |  |  |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------|------------------|--------------|---------------------|--|--|
|                                                                                                     |                                                                                       |                     |                  |              |                     |  |  |
| Description of Activity                                                                             | Man Hours                                                                             | Man Hour Cost       | Product          | Product Cost | Total Activity Cost |  |  |
|                                                                                                     | 1                                                                                     |                     |                  |              | í l                 |  |  |
| 50 Mowings / Season                                                                                 | 113                                                                                   | 2,228.36            |                  |              | \$ 2,228.36         |  |  |
| Growth Regulator, Once Per Month                                                                    | 12                                                                                    | 236.64              | Primo            | 1,227.60     | \$ 1,464.24         |  |  |
| Topdressing, 5 Applications Per Year                                                                | 31.5                                                                                  | 621.18              | Sand             | 1,987.50     | \$ 2,608.68         |  |  |
| Water, 1 Acre Inch Per Week/ 26 Weeks                                                               | 6                                                                                     | 118.32              | City Water       | 5,703.62     | \$ 5,821.94         |  |  |
| Fertilizer @ 6.1 #s N / year                                                                        | 12                                                                                    | 236.64              | Fertilizers      | 1,548.00     | \$ 1,784.64         |  |  |
| Paint, 6 Applications Per Season / 20-5 Gal. Pails                                                  | 45                                                                                    | 887.40              | Paint            | 378.75       | \$ 1,266.15         |  |  |
| Aeration, 3 Times Per Year                                                                          | 13.5                                                                                  | 266.22              | Verti-Drain      |              | \$ 266.22           |  |  |
| Fungicide, Four Applications / Season                                                               | 8                                                                                     | 157.76              | Disarm 480 SC    | 1,575.00     | \$ 1,732.76         |  |  |
| Over-Seeding, Once Per Season                                                                       | 5                                                                                     | 98.60               | Seed             | 997.50       | \$ 1,096.10         |  |  |
| Herbicide, One Applications Per Season                                                              | 2                                                                                     | 39.44               | Herbicide        | 22.66        | \$ 62.10            |  |  |
| Fence-line Maintenance, 2 Apps. Per Year                                                            | 8                                                                                     | 157.76              | Control Products | 125.00       | \$ 282.76           |  |  |
| Miscellaneous                                                                                       | 50                                                                                    | 986.00              | Misc. Products   | 200.00       | \$ 1,186.00         |  |  |
| Pre-emergent Applications                                                                           | 4                                                                                     | 78.88               | Drive 75 DF      | 360.18       | \$ 439.06           |  |  |
| Insecticide Applications                                                                            |                                                                                       | -                   | Dylox            |              | \$-                 |  |  |
|                                                                                                     |                                                                                       |                     |                  |              | \$-                 |  |  |
| Sports Lighting                                                                                     |                                                                                       | -                   | Electricity      | 402.60       | \$ 402.60           |  |  |
|                                                                                                     |                                                                                       |                     |                  |              |                     |  |  |
|                                                                                                     |                                                                                       |                     |                  |              |                     |  |  |
|                                                                                                     | Labor Cost                                                                            | \$ 6,113.20         | Supplies Cost    | \$ 14,528.41 |                     |  |  |
|                                                                                                     |                                                                                       |                     |                  |              |                     |  |  |
| * These lighting estimates are based on 10 events @ th                                              | * These lighting estimates are based on 10 events @ three hours in length per season. |                     |                  |              |                     |  |  |
| 76 - 1,500 Watt Lights                                                                              |                                                                                       |                     |                  |              |                     |  |  |
|                                                                                                     |                                                                                       |                     |                  |              |                     |  |  |
| Labor Cost \$16.44 x 20% benefits =                                                                 | \$ 19.72                                                                              | Labor Cost Per Hour |                  |              |                     |  |  |
|                                                                                                     |                                                                                       |                     |                  |              |                     |  |  |
| Mowing Season : 33 Weeks x 1.5 Mowings / w = 50 Mowings / Season x 2.25 hrs. / Mowing = 112.50 hrs. |                                                                                       |                     |                  |              |                     |  |  |
|                                                                                                     | Ĭ                                                                                     | ž                   |                  |              |                     |  |  |

#### **Compost prices depend upon Region**

" Biosolid compost price reported by facilities all over the USA range from \$6-\$30 per cubic yard". Dec 2010, Biocycle magazine

So for a 114.000 sq ft , 1/4 inch rate (about 0.7 yd3 product) = \$478.8 - \$2394



### • "ORGANIC" DOESN'T MEAN "GOOD"

### PROMOTE A RESPONSIBLE USE AND PRODUCTION

REGULATIONS



#### **Federal Regulations**

 Regulates biosolid compost. 503 USEPA regulations (40 CFR code)
 Special regulations for sewage sludge use and disposal (Salmonella sp and fecal coliform)

#### **State Regulations**

- Composting Regulations OhioEPA (OAC 3745-27-01 to OAC 3745-27-40)
- Limits for compost maturity, pH, heavy metals, salts, etc

## My current Research

\*Evaluation of Compost and Compost <u>Topdressing</u> Programs for Enhancing the <u>Playability</u> and Sustainability of <u>Established Soil-Based Athletic Turf</u>

## TURFGRASS SCIENCE



GOLF









SPORTS TURFGRASS

#### SANDY SOIL PROFILE

#### PROFILE SOIL NATIVE





#### **LOW MAITENANCE**



#### **MODERATE MAITENANCE**



## MAYOR PROBLEMS OF MODERATELY MAINTAINED SPORTS FIELDS

### Excessive use and wear

## **Compaction**



## Soil Compaction

#### **Players and Equipment**

(Produce shear and compressive stress)



(Decrease in total porosity)

Soil compaction inhibits important soil processes such as water infiltration, water drainage and soil aeration. This results in a poor environment for soil microorganisms and plants

First 2-3" upper soil profile

## What has been done?

•There are several studies that have shown <u>reduced severity of</u> <u>diseases, improved turf quality during drought, improved turf color,</u> <u>and soil nutrient status</u> when compost was applied as amendments and topdressing in golf and sports turf settings, greenhouse and laboratory studies (Johnson et al, 2009, Loschinkohl and Boehm, 2001, Munoz et al, 2010).

•Topdressing in spring and fall with <u>sewage sludge and yard waste</u> <u>compost</u> showed <u>enhanced color and increased foliar nitrogen</u> concentrations (Garling and Boehm, 2001).

•However, there is little information available about compost topdressing and playability on sports fields.



- No research relating compost topdressing with playability
- No recommendations for compost application methods-programs
- No research relating compost topdressing to wear-traffic





- Evaluate two compost types (sewage sludge bio-solid compost and yard waste compost) and a sand compost blend that are considered to possess good quality compost characteristics and <u>bulking agent</u>.
- Evaluate the potential benefits of compost topdressing to improve soil physical and chemical properties of established athletic field soils.
- Evaluate the effect of compost topdressing on key playability characteristics including wear tolerance surface hardness, turf ground cover, sod strength, and overall turfgrass color and quality.

## **HYPOTHESIS**

Topdressing of composted biosolids, yard waste compost and/or a sand-biosolids blend applied in conjuction with core cultivation will enhance the playability, sustaintability and safety of soil-based athletic turf

## **Material and Methods**

The research was conducted at the Ohio Turfgrass Foundation Research and Education Facility, OSU, Columbus, Ohio, USA.

The soil type was a Brookston silty-clay loam

The turf was an established stand of turf-type **tall fescue** (*Festuca arundinacea*), 'Falcon IV'

The experimental design was a strip-split plot desing (plots 9x5 feet, 1.52 x 2.74 m) with three replication.

Plots received moderate maintenance (mowed twice per week at 63.5 mm (2 <sup>1</sup>/<sub>2</sub> in)and irrigated to prevent wilt).

## **Strip-split plot desing**

#### CORING

**COMPOST** 

#### Tall fescue (Falcon IV)

Rep I Rep II

Rep III

• An equivalent of 30 games were imposed between fall and spring 2009-2010 with the Brouwer machine

• Core cultivation was done prior compost top dressing, using a Ryan GA30 ( $0.2 \text{ g/cm}^2$  soil removed, 3 in depth)

•Cores were returned and raked in after

•For preliminary results data was analyzed by analysis of variance (ANOVA) and appropriate means separation was computed using Fishers LSD with  $\alpha$ =0.05 by SAS



## **Treatments**

#### I. Topdressing Rate (Turfco Meter-R Matic F15-B)

<sup>1</sup>⁄<sub>4</sub> in (6 mm ) <sup>1</sup>⁄<sub>2</sub> in (13 mm) 1 in (25 mm)

#### II. Compost Type

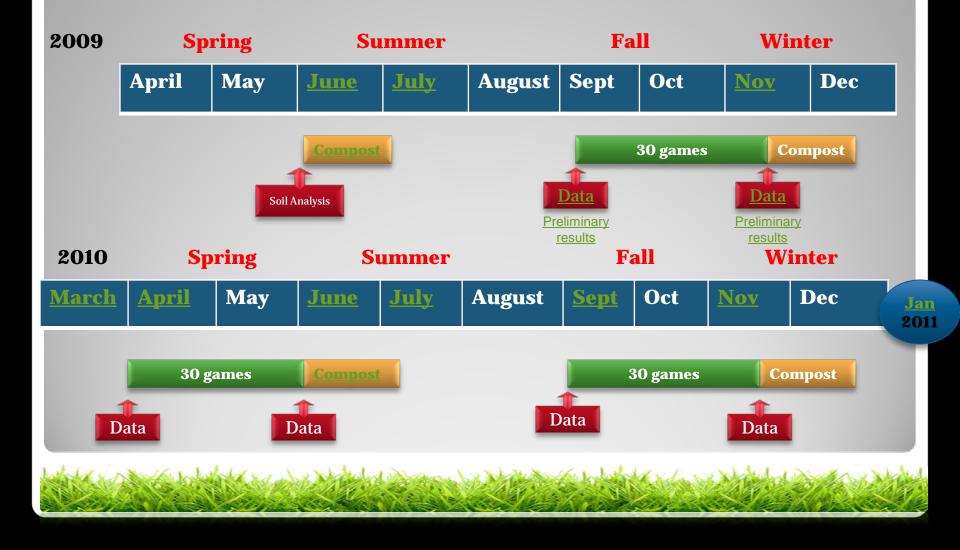
Sewage Sludge Compost (COMTIL) Sand/COMTIL mix 70/30 (v/v%) (Kurtz Brothers) Yard Waste Compost (Kurtz Brothers)

#### **III. Coring Intensity**

12-15 cores per square foot24-30 cores per square foot(Recycle soil back into surface/compost)



#### SAND/COMTIL MIX




YARD Waste

COMTIL



### **Analytical and Field Measurements**



# **2009 Preliminary Conclusions**

✓Turfgrass color and soil nutrient status increased with compost treatments indicating a generally positive effect on overall turf quality.

✓ Playability parameters after topdressing with compost and wear, were within acceptable ranges/values for sports such as football and rugby indicating that compost can be safely used in athletic turf.

✓These results clearly demonstrated that compost can be use on sports fields and should be considered as an alternative and sustainable method for turfgrass managers.

✓ Future data analysis is need to support these results



•Baker, S.W. 1991. Temporal variation of selected mechanical properties of natural turf football pitches. Journal of the Sports Turf Research Institute. 67:83-92.

•Garling, D.C. and M.J. Boehm. 2001. Temporal Effects of Compost and Fertilizer Applications on Nitrogen Fertility of Golf Course Turfgrass. Agron J. 93:548-555

•Johnson, G.A., Y.L. Qian and J.G. Davis. 2009. Topdressing Kentucky Bluegrass with Compost Increases Soil Water Content and Improves Turf Quality During Drought. Compost Science and Utilization 17(2):95-102.2009

•Loschinkohl, C. and M.J. Boehm. 2001. Composted Biosolids Incorporation Improves Turfgrass Establishment on Disturbed Urban Soil and Reduces Leaf Rust Severity. HortScience. 36(4):790–794. 2001

•McClements, I., and S.W. Baker. 1994. The playing quality of natural turf rugby pitches. Journal of the Sports Turf Research Institute. 70:29-43

•Munoz, M.P., Street ,J.R., Gardner, D.S, McCoy, E., Darrah, C.H and P.J. Sherrat.2010. Influence of compost topdressing on turfgrass quality and playability on established soil-based athelic turf. 2nd European Turfgrass Society Proceedings Journal. 1:145-147

•Nelson, E.B. and Boehm, M.J. 2002. Compost induced Suppression of turf grass diseases. BioCycle 43: 51-55.

•Nelson, E. Microbiology of turfgrass soils.1997. Grounds Maintenance. ISSN :0017- 4688. Source: LexisNexis Academic

•Nelson, B., and M. Boehm. 2002. Microbial mechanism of compost-induced disease suppression. Byoclycle. June:45-47

•Petrovic, A.M., J. Gruttadaurio, J. Barlow, E.Harrison, J. Bonhotal, M. Schawrz and D. Soldat. 2008. Influence of Site Conditions on Soil Responses to Manure-based Compost Applications on Athletic Fields. Acta Hort. 783:415-424

•Rynk, R., Van de Kamp, M, Willson, G., Singley, M., Richard, T., Kolega, J., Gouin, F., Laliberty, L., Kay, D., Murphy, D., Hointink, H., and W. Brinton. 1992. On Farm Composting Handbook, NRAES-54.Natural Resources, Agriculture, and Engineering Service (NRAES) Cooperative Extension. Ithaca, NY

•Sylvia, D., Furhrman, J., Harte, P., Zuberer, D. 2005. Principles and applications of soil microbiology. Person Prentice Hall. Upper Saddle River, New Jersey. 592-594.634.

•Tiquia, M., Lloyd, J., Herms, D., Hoitink, H., and C. Frederick.2002.Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Applied Soil Ecology 21:31-48



# **City of Columbus**



## **Kurtz Brothers**



### **Ohio Turfgrass Foundation**



**CLC LABS** <sup>®</sup> Meeting the needs of the Green Industry Meeting the needs of the Green Industry

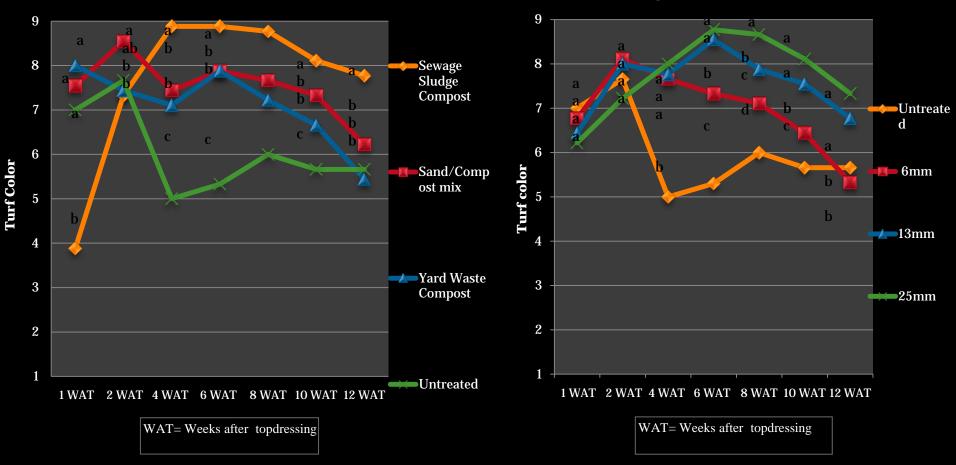




| We are measuring                            | Measurement                                                                                                    | Equipment/method                                                                                                                          |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| SOIL STRUCTURE AND<br>POROSITY              | Soil bulk density (upper 25 mm and lower 50- 75 mm)                                                            | One 50.8 mm radius core sampled to a 75 mm<br>depth and cut in two at 25mm ,placed into a<br>laboratory oven and dried at 70°C for 48 hrs |
| PLAYABILITY                                 | Surface traction - Rotational shear strength                                                                   | Canaway Turf Shear Tester (weighted at 46.1<br>kg and dropped from a height of 60 mm using<br>18 mm long studs, 3 readings per plot)      |
| PLAYABILITY                                 | Surface traction - Lateral shear strength                                                                      | Turf Shear Tester TST Model CCB1B 50w x<br>30d, 3 readings per plot                                                                       |
| PLAYABILITY                                 | Surface hardness/resiliency                                                                                    | Clegg Impact Soil Tester 2.25 kg hammer<br>dropped from 0.55 m height, 6 readings per<br>plot                                             |
| PLAYABILITY                                 | Soil compaction                                                                                                | Soil compaction tester (Penetrometer) ¼ in<br>tip at 75 mm depth. 3 readings per plot                                                     |
| TURF QUALITY                                | Turf color                                                                                                     | NTEP Method (1-9 scale, 1=dead, 9= dark<br>green)                                                                                         |
| TURF QUALITY                                | Turf Cover                                                                                                     | 1-100%                                                                                                                                    |
| COMPOST DEGRADATION                         | Material Cover                                                                                                 | 1-100%                                                                                                                                    |
| SOIL PHYSICAL AND<br>CHEMICAL PROPERTIES    | Soil physical and chemical<br>properties (macro and micro<br>nutrients, heavy metals, OM and<br>soluble salts) | CLC Labs (data not reported)                                                                                                              |
| COMPOST PHYSICAL AND<br>CHEMICAL PROPERTIES | Soil physical and chemical<br>properties (macro and micro<br>nutrients, heavy metals, OM and<br>soluble salts) | CLC Labs (data not reported)                                                                                                              |
| WATER VOLUME IN THE SOIL                    | Volumetric water content                                                                                       | TDR300 (set in clay soil)                                                                                                                 |
| PLANT NUTRIENT<br>CONCENTRATION             | Plant tissue analysis. Micro-macro<br>nutrient                                                                 | CLC Labs (data not reported)                                                                                                              |



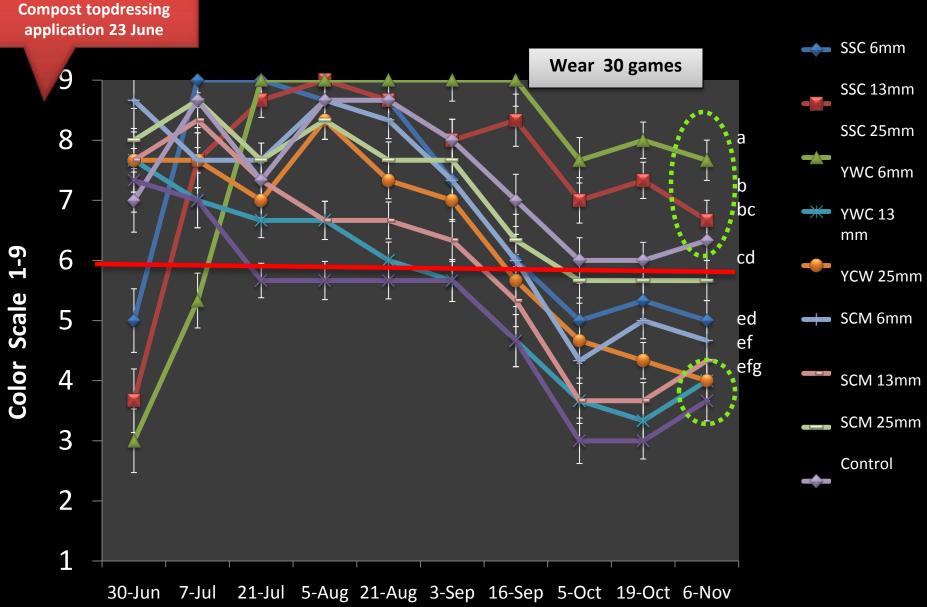
#### COMTIL



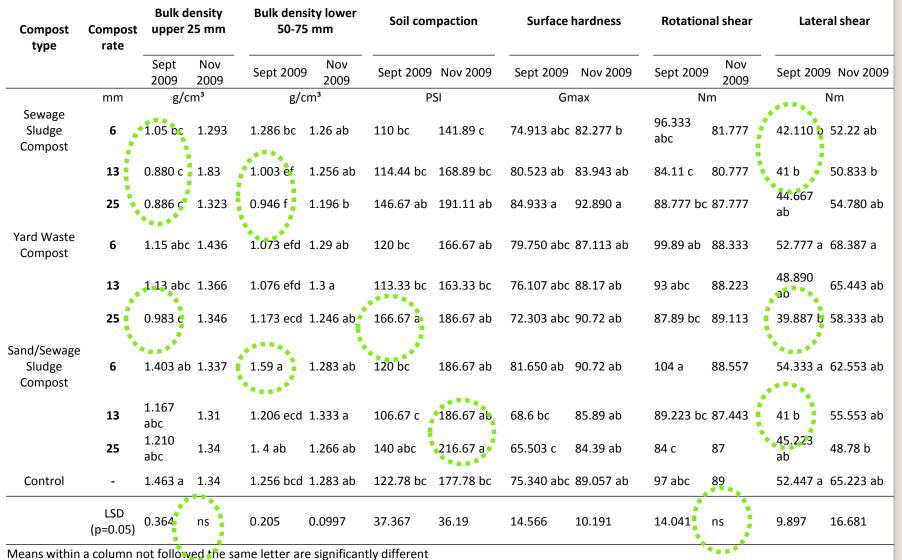

#### SAND/COMTIL MIX






# **Some preliminary results**




#### Turf color after 12 weeks of first compost topdressing application



#### Effects of Topdressing with Compost on Turf Color 2009



SSC= Sewage Sludge compost YWC= Yard waste compost SCM= Sand/Sewage Sludge



#### Table 2. Soil and playability characteristics as affected by compost topdressing, prior and after wear-traffic

Means within a column not followed the same letter are significantly p=0.05, ns = not significant

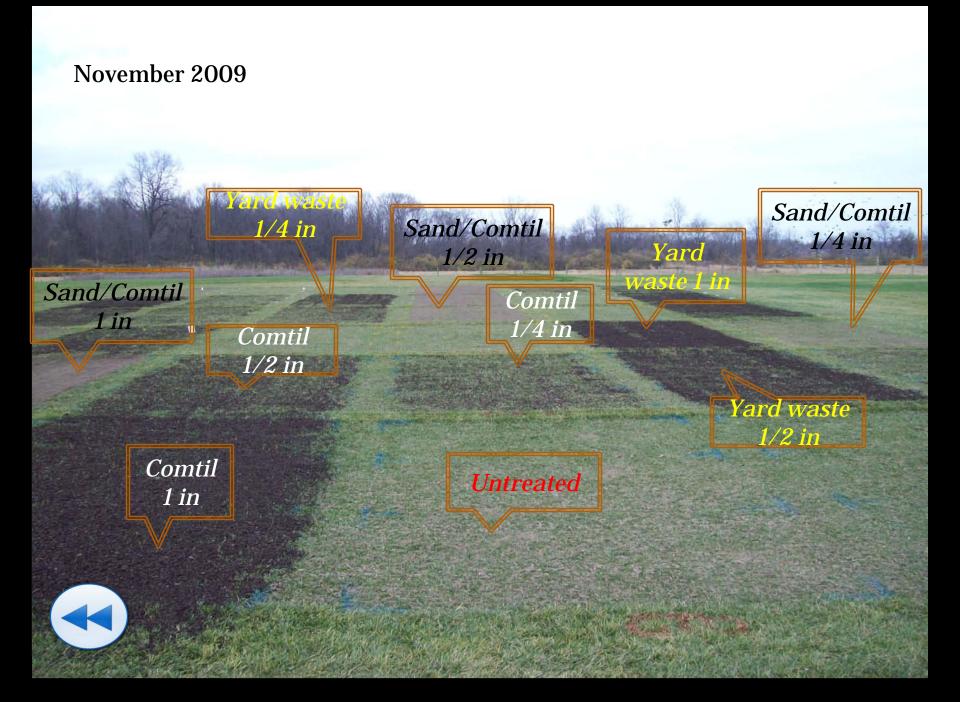
•Soil compaction prior to wear was significantly higher with YWC at 25 mm, however after wear compaction was higher for SCM at 25mm

•Soil bulk density in the upper 25 mm prior to wear was significantly lower than control in plots topdressed with SSC at 13, 25 mm and YWC at 25mm

•Soil bulk density in the upper 25 mm increased after wear, however, no significant differences between treatments and control occurred

•Soil bulk density increased after wear with no significant differences between treatments the and control.

•Prior to and after wear, **surface hardness** resulted in **acceptable ranges** for football and rugby (10-100 Gmax, Baker, 1991) .


•Rotational and lateral shear strengths were within the preferred (> 35Nm) and acceptable (>25Nm) values for football and rugby (McClements and Baker, 1994).

#### June 2009

#### July 2009-1 month after first topdressing application









# 01 April 2010

#### End of April 2010. First spring cut



Soil cores after the second sand/comtil topdressing application at 1 in. June 2010

**CORING 2X** 

23

22

20 21

0

00=

07-

00-

0

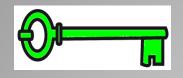
**NO CORING** 

**CORING 1X** 




### **July 2010**






### November 2010 after 30 games

#### November 2010



#### JANUARY 2011 (one week ago)



# **Bulking Agent**

- Dry organic materials added to the compost mix to adjust aeration properties, provide structural suport and absorbs moisture
- Unique for each type of compost
- Types: wood chips, ground yardwaste, bark, sawdust, tires, etc
- EPA authorized : wood chips, straw & strover, shredded newspaper/cardboard, sawdust, shredded brush, biodegradable containers
- Bulking agent size  $\leq \frac{1}{2}$  inch

# **Playability**

How the surface interacts with the players and the ball

### PLAYING QUALITY

- Surface hardiness
  - Ball rebound, ball roll and speed
  - Safe play
- Surface traction
  - Player movement (injuries or slipper)
- There are testing methods and acceptable ranges







Spreader with large hoopper



**Conventional tractor mounted fertilizer** 



Modified manure spreaders with conveyor belts and brushes mounted on the back



Spreading the pile with a thin york rake or grading blade

