A New Era In Sports Turf Management

Do we change our ways of Sport Turf Maintenance?

No!

Agronomics Cant Change. We have to!

Waste

Water Efficiency

Green House Gas

Storm Water Pollutants

Why Worry?

Red Tide

Wildlife

Fish Population Lost

Closed Beaches

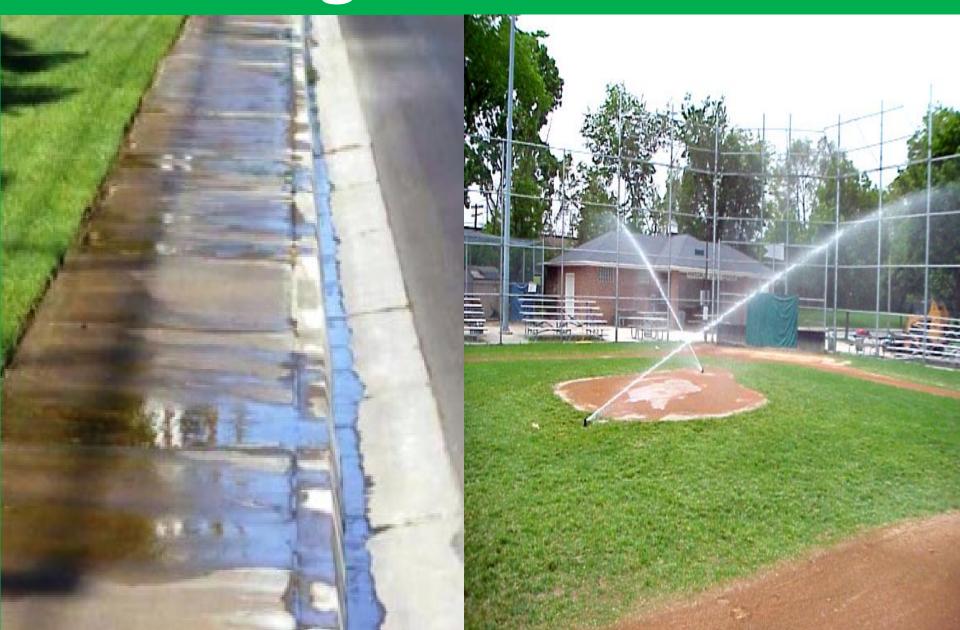
Our We Prepare Enough To Protect Our Local Water Shed

Lets Started With Good Housekeeping

Fertilizers & Pesticides Applications

Pesticides Storage

Fueling & Pesticide Mixing Station


Paint Mixing

Equipment Washing Station

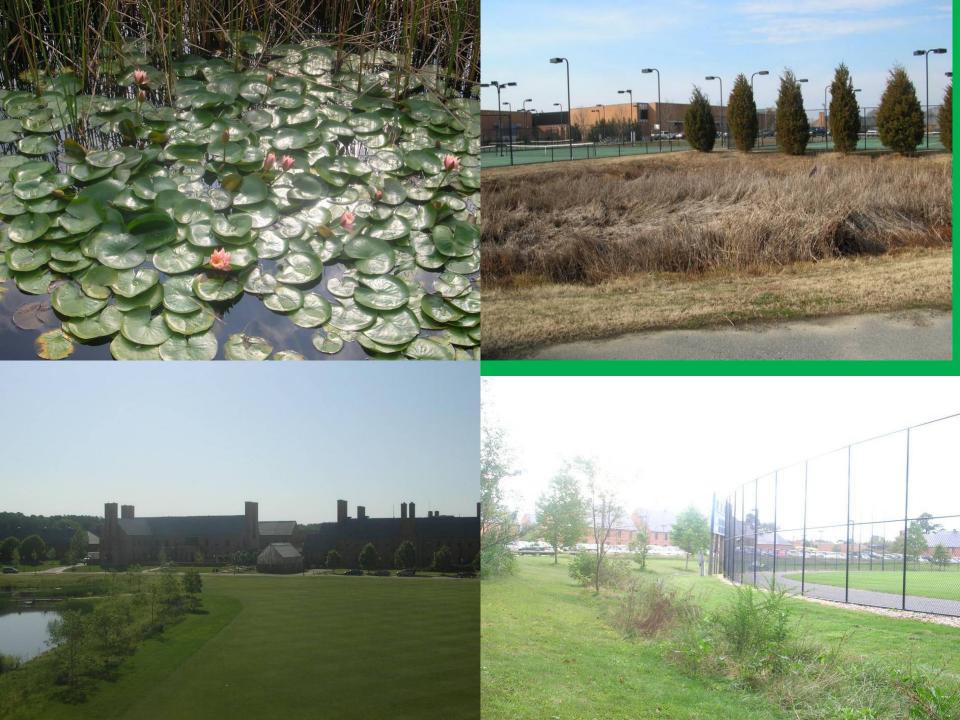
Irrigation Runoff

Environmental Four Rules OfProtection

Protect Your Local Water Shed From These Four Types Of Measures.

- 1.Preventalbe
 - 3. Culture
 - 3.Biologic
- 4. Mechanical

Preventable



Rain Barrels

Cleaning Drains

Culture

Biological

Mechanical

Get Involved

Get involve with your Local Water Shed Association

http://water.epa.gov/action/adopt/network.cfm

- 1. Click On Your State.
- 2. Click On Your County.
- 3. Find a local watershed association that is near you.

Maryland

Group Name: St. Mary's River Watershed Project

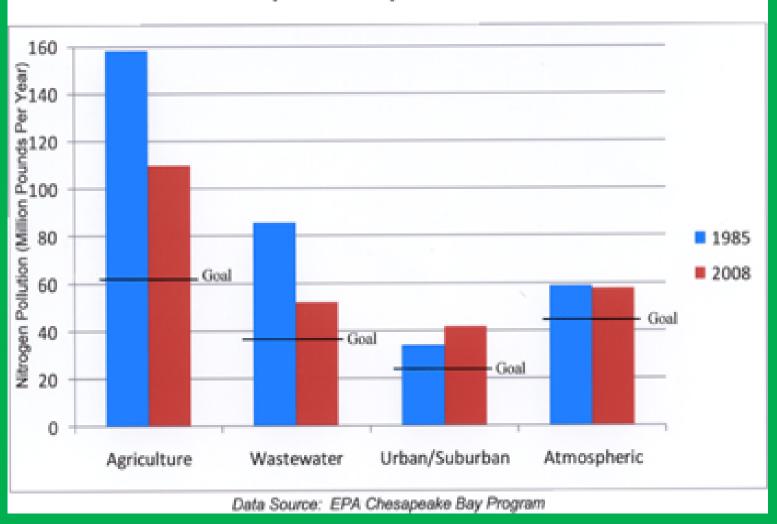
Contact: Dr. Nancy Paige Smith

Contact Address: General Delivery

St. Mary's, Maryland 20686

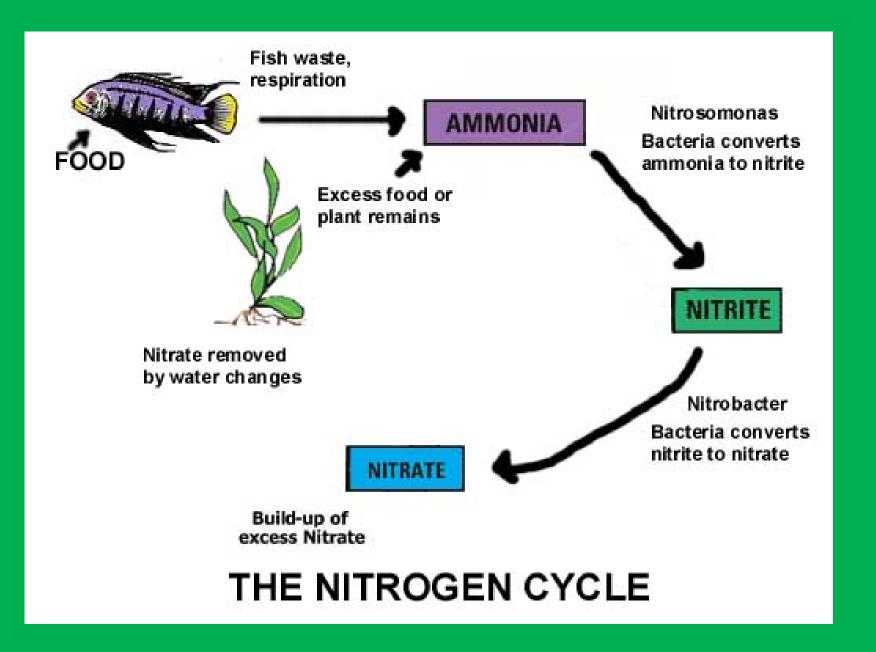
Contact Phone: (301) 862-0392/0405 (office), 301-862-3615 (home)

Contact Email: npsmith@osprey.smcm.edu


URL: http://www.smrwa.org/gal_stmarysriverproject.html

Activity: Restoration/Conservation Project, Watershed Alliance/Council Description: Established: 1993 *Mission:* To coordinate various activities of environmental and civic groups concerned with the St. Mary's River environment and sustainable development & ecosystem management and to archive information about St. Mary's River.

Number of Volunteers: varies


Understand Your Local Watershed Pollutants Sources & Goals

Sources of Nitrogen Pollution in the Chesapeake Bay vs. 2010 Goals

Measuring Your Storm Water Pollutants

Aquarium Water Cycle

Non Point Source

NPS/ Comes from fertilizers, manure, sewage, grass clippings, leaves, etc...Once the decaying process starts or the breakdown of the components, then your ammonia levels increases. This toxicity in the water results in fish loss from dieses and stress. Measuring ammonia by parts per million (PPM) is the best way to see how much of this deadly toxin you have in your storm water.

Check the storm water runoff that travels through your facility.

Draw Six Samples

What Are We Testing For?

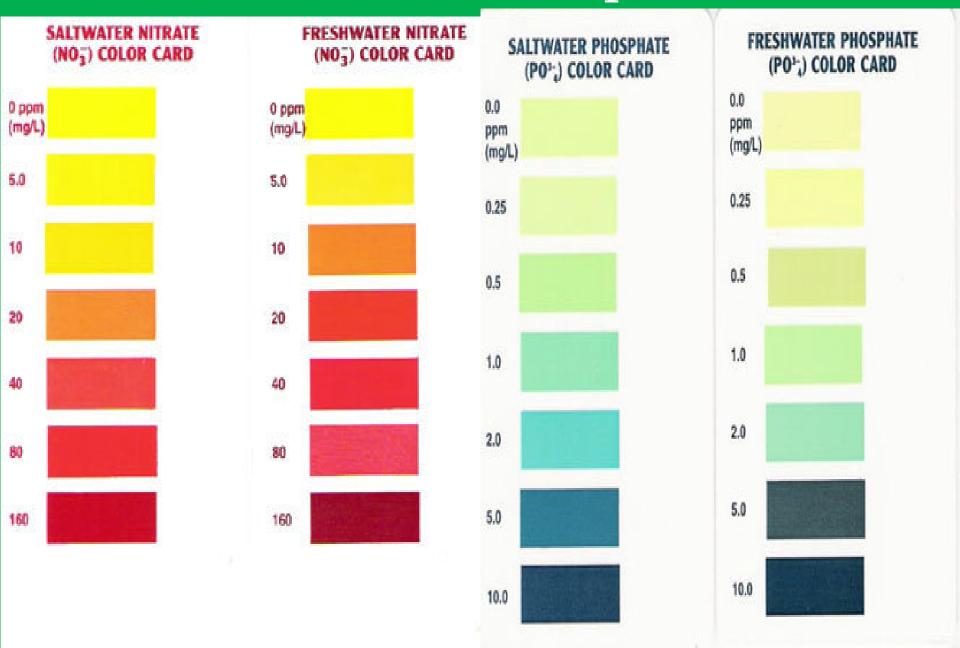
We are measuring Non Point Sources (NPS).

- Ammonia:
- Nitrites:
- Nitrates
- Phosphors
- Coliform
- Pesticides

Water Test Kits

Ben Meadows (HACH)

Aquarium Test Kit


Ammonia

Nitrites

Nitrates

Phosphors

Pesticides

Table 1. Sediment Characterization Data (mg/kg, dry, unless specified)

			Grand Calumet	Ashtabula
	Buffalo River ¹	Saginaw Bay	River ²	River
Total PCBs	0.33	21.9	12.9	14.6
Total PAHs	9.31	2.70	244	6.1
Arsenic	13.0	2.2	<21	21
Barium	405	322	296	903
Cadmium	2.0	4.1	7.9	3.1
Chromium	118	107	1480	591
Copper	72	59	230	34
Iron	44200	7870	182000	42600
Lead	105	46	706	59
Manganese	680	165	2390	559
Mercury	0.51	0.17	1.5	0.19
Nickel	44	58	74	53
Selenium	0.70	< 0.03	< 3.7	0.91
Silver	0.30	0.84	4.9	0.19
Zinc	185	140	2840	234
Total Cyanide	5.6	4.1	22	1.5
Total Phosphorus	1120	740	2650	1290
Moisture, %, as received	d 55.1	24.0	51.2	35.6
Oil & Grease	5980	1350	45700	1004
TOC, % weight	1.88	0.83	18.4	2.00
Total Volatile Solids, %	4.57	2.09	15.0	7.64
pH, S.U., as received	7.72	7.30	7.61	7.88

^{1 -} Average of two analyses

^{2 -} Average of three analyses

Coliform Testing

How to convert percent to ppm

The part P in percent (%) is equal to the part P in ppm divided by 10000:

$$P_{(\%)} = P_{(ppm)} / 10000$$

Example

Find how many percent are in 6ppm:

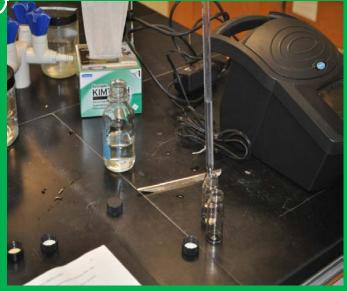
$$P_{(\%)} = 6ppm / 10000 = 0.0006\%$$

Record Your Findings

How can we takeout these toxic nutrients?

Think of how you do maintenance to your home aquarium.....


Water Changes



Biologic Filters From Plants.

Test The Water Leaving Your Property

Resource Management

- Energy/Fuel Use
- Waste Reduction
- Recycling

Reducing Your Carbon Footprint

US EPA Tier 4 Standard

25-74hp Non-Road
 Diesel Equipment

 Mandated for Equipment
 Manufactured After January 2013

Energy Efficiency

Less Energy, Less Cost

Motion Sensors

Programmable Thermostats

Fluorescent Bulb Crushers / Compactors

Waste Oil Heater

Wildlife and Habitat Projects

Wildlife & Pollinator Gardens

Native Pollinators

- Butterflies
- Bees
- Hummingbirds
- Bats
- Other insects

Pollinate 80% of the world's food crops and provide the "sexual glue" that holds much of the plant world together.

Sustainable Gardens (Wildlife)

- Wildlife-specific plantings can encourage occupation by hummingbirds, butterflies, and songbirds
- Supplemental baths, structure or nestboxes can add habitat value to property
- Nectar-bearing plants promote occupation by pollinators
- Leaving dead trees "Snags" standing when they do not pose a safety hazard

Sustainable Gardens (Xeric)

- Xeric gardening requires little or no supplemental irrigation inputs
 - Drought tolerance
 - Reduced mowing and maintenance
 - Reduced energy costs
 - Elimination of chemical inputs

Wildlife and Habitat Projects

Supplemental Structures For:

- Bluebirds
- Purple Martins
- Wood Ducks
- Raptors
- Bats
- Bees

Enlist Community Help, Gain Local Support

- Local Gardening or Birding Groups
- Cooperative Extension
- Scouts
- Watershed Organizations

It's a Group Effort

When its "right", your landscaping...

 Creates a healthier, sustainable mosaic of land uses on the landscape

Maintains a diversity of plants and animals

 Maintains the gene pool of particular plants and animal species, promoting hardiness, disease resistance, and adaptability

Protects ecosystems and ecological communities

When its "right, your landscaping....

- Improves water quality
- Creates positive, progressive, and constructive attitudes about the natural world
- Promotes the concept that natural is beautiful and desirable
- Reduces maintenance needs, reduces water use, and lessens or eliminates chemical use

Things to Remember

- Do the best you can, with what you have
- Projects need not be costly, and can improve both your bottom line and reputation
- Small steps are better than no steps at all (something little can have big impacts)
- You don't need to be an expert, merely a participant

Questions?