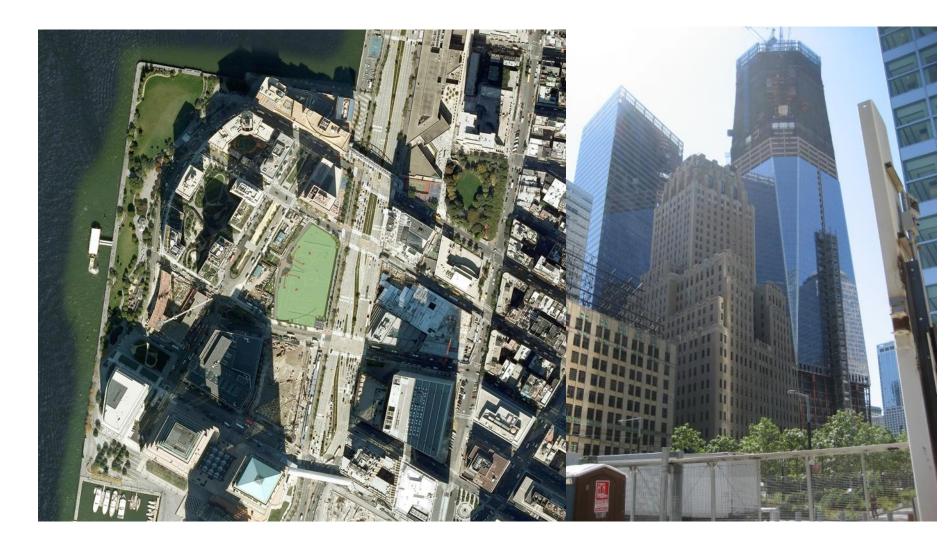
CASE STUDY: battery park city community ball fields

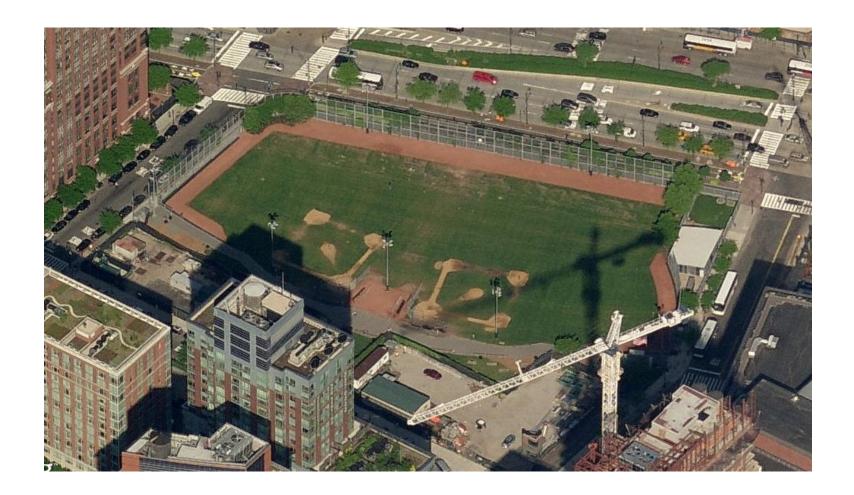
Stantec Sport

David Nardone, RLA, LEED AP Stantec Sport Group Leader (617) 792-6468 david.nardone@stantec.com

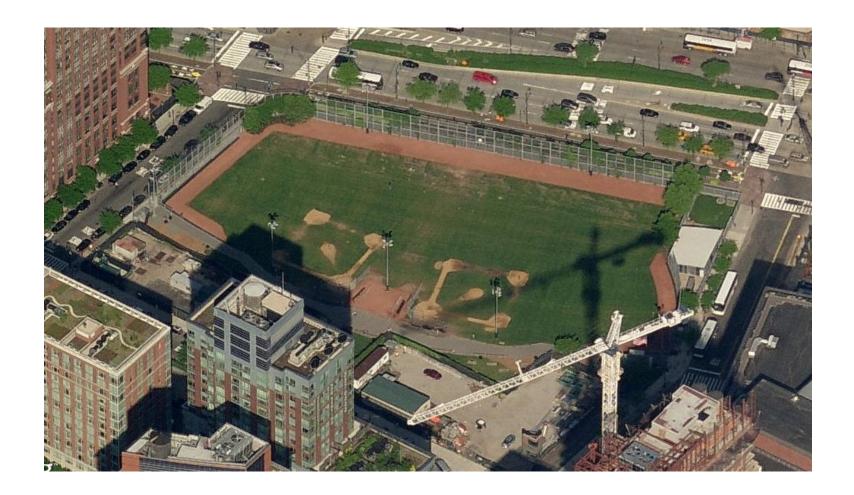
Patrick Maguire President (617) 834-7286 epm@activitas.com



AGENDA

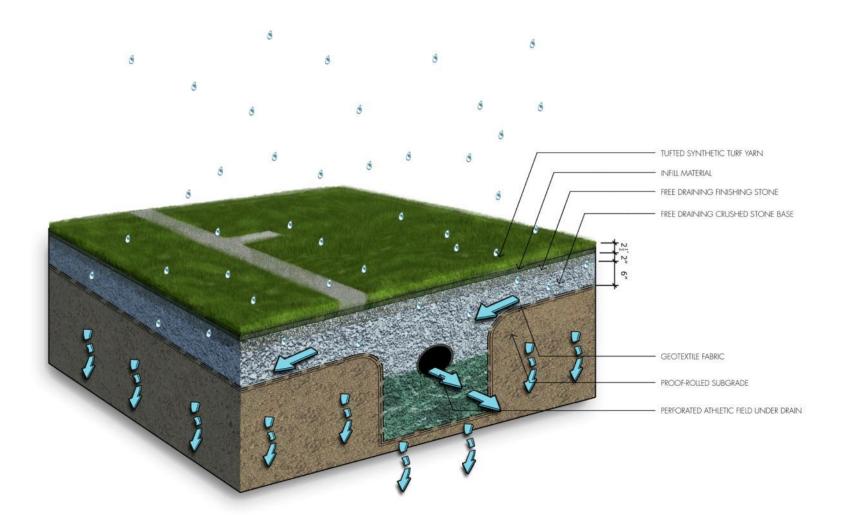

- Describe the Exiting Conditions
- Review Clients Program and Sustainability Mandate
- Review the 'Most Sustainable Turf System'
 - Review a typical synthetic turf system components and the way these systems 'work'
 - Review of the Life Cycle Analysis the "Most Sustainable" Turf System
- Review of Site Specific Sustainability Initiatives
 - Stormwater Management with Multi-media Filters
 - Lighting Fixture Replacement
 - Consensus on PVs and Wind Turbines

Location



Program and Sustainability Mandate

TURF SYSTEM COMPONENTS


- Identification and presentation of alternative and more sustainable turf alternatives and their advantages and disadvantages
- Removal of potentially hazardous materials in the turf system
- Identification of a recyclable product(s) upon removal at end of field useful life
- Address heat build-up. How to reduce heat build-up and/or mitigate impacts?
 Based on Provide a system that effectively filters rain and run-off

SITE SPECIFIC STORMWATER IMPACTS

- Stormwater impacts: address quality and quantity of run-off
- Potential for stormwater collection and re-use
- Integration of water treatment and potential for re-use on site

Typical Synthetic Turf System

Synthetic Turf System Components

Fiber - Traditional Slit Film

Fiber - Parallel Slit Film

Fiber - Monofilament - Spine

Fiber - Monofilament - Shape

Infill - Organic

Infill - TPE

Pad - Panel/Roll

Backing - PP & PE

Infill - Recycled SBR

Infill - Sand(s)

Pad - E-Layer

Backing - PP & PU

Synthetic Turf System Components / Life Cycle Analysis

SYNTHETIC TURF SYSTEM COMPONENTS

Component	General Description	Manufacturer Example*	Manufacturing Location	Manufacturer's Website			
CARPET							
2.5" Height	Polyethylene carpet fibers standing 2.5" high, infilled 1.75"	A-Turf	Dalton, GA	www.aturf.com			
1.5" Height	Polyethylene carpet fibers standing 1.5" high, infilled 0.75"	A-Turf	Dalton, GA	www.aturf.com			
w/thatch layer	Polyethylene carpet fibers with 1.5"-2.5" with nylon "rootzone" or "thatch layer", can help to reduce infill splash	AstroTurf (Gameday Grass)	Dalton, GA	http://www.astroturfusa.com/product/gamedav-grass.html			
No Infill - PE	Polyethylene carpet fibers approx. 1" high, densely tufted so no infill is needed	A-Turf (SportTurf-Cushion)	Dalton, GA	http://www.aturf.com/index.php/artificial-turf-specifications/			
No Infill - Nylon	Nylon carpet fibers tufted together to form a "mat" - typically very abrasive	AstroTurf (AstroTurf 12)	Dalton, GA	http://www.astroturfusa.com/product/astroturf12.html			
Primary	The backing which the synthetic turf fibers are tufted through which gives the carpet strength and stability	Royal Ten Cate	Dayton, TN	www.tencate.com			
Secondary	A coating over the primary backing which essentially "glues" the fibers to the backing thereby further increasing carpet strength and stability	Universal Textile Technologies / Dow Chemical	Dalton, GA	www.universal-textile.net			
INFILL							
SBR	A recycled rubber typically derived from passenger and/or truck tires	Target Technologies International Inc.	Burnaby, BC, Canada	http://www.ttiionline.com/ambient_crumb_rubber.htm			
Coated SBR	SBR rubber coated with pigmented polyurethane						
EPDM	A recycled rubber derived from off-cuts of production lines making it a "virgin" rubber	Target Technologies International Inc.	Burnaby, BC, Canada	http://www.ttiionline.com/epdm_crumb_rubber.htm			
TPE	Granules are made from thermoplastic elastomers creating a true virgin rubber	Polytan USA	Marietta, GA	www.polytan-usa.com/sports surfaces infill materials polytan.ph			
Sand - Silica (20-40 mesh)	A round, smooth, uniform sand, without angular pieces to reduce any potential infill compaction	Target Technologies International Inc.	Burnaby, BC, Canada	http://www.ttiionline.com/silica_sand.htm			
Sand - Flexsand	An elastomer coated sand to provide a firm yet flexible infill	Mineral Visions, Inc.	Chardon, Ohio	http://www.ttiionline.com/flex_sand.htm			
Sand - Local/Native	Typically angular "beach" type sand, angularity can promote infill compaction	Fairmount Minerals	OH, MI, WI, TX	www.fairmountminerals.com			
Coconut Fiber w Sand	A pre-mixed infill blend of coconut fibers and sand	Italgreen	Italy	www.italgreen.it			
Coconut Fiber w Sand & Coated Rubber	A pre-mixed infill blend of coconut fibers, sand and a coated rubber	Italgreen	Italy	www.italgreen.it			
Coconut Fiber w Cork	A pre-mixed infill blend of coconut fibers and cork	Geo Turf by Limonta Sport USA	Italy / New York, NY	http://www.geosafeplav.com/infill-geo.asox			
UNDERLAYMENT							
E-layer (CIP Rubber)	A paved-in-place mat consisting of SBR rubber and a binding agent or "glue"	Ecore International (Rubber)	Lancaster, PA	www.ecoreintl.com			
Pre-fab Pad (Rubber Roll)	A pre-fabricated rubber mat which can be loose laid on a subgrade	Regupol America	Lebanon, PA	http://www.regupol.com/turf.html			
Brock (panel)	A pre-fabricated panel which interconnects with adjacent panels on top of the subgrade - no additional attachments methods are necessary	Brock International	Boulder, CO	www.brock-international.com			

Life Cycle Analysis

Life Cycle Stages for an Artificial Turf System

At each life cycle stage, resources are consumed, emissions are released to air and water, and wastes are produced, resulting in a range of environmental impacts.

Life Cycle Analysis

Sustainability Criteria Considered for Turf System Design

Life Cycle Stage	Sustainability Criteria	
	Energy required for resource extraction and processing	
Manufacturing of Turf	Amount of non-renewable resource inputs	
Components	Amount of recycled or reused materials	
	Use of hazardous raw materials	
	Distance transported from manufacturer to project site	
Transport of Turf	Efficiency of transport mode	
Components	Mass of material to be transported	
	Amount of packaging required for transport to project site	
	Amount of excavation required	
Installation of Turf	Amount of aggregate/stone infill required	
Components	Energy required to operate machinery	
	Waste management options	
	Meets the functional requirements for intended use	
Field Maintenance and	Exposure to toxic materials	
Performance and	Energy required for maintenance activities	
Periormanice	Water required for cleaning and cooling	
	Life span	
End of Life /	Ability to reuse the materials	
End of Life /	Ability to recycle the materials	
Component	Amount of material that must be placed in landfill	
Replacement	e	

Life Cycle Analysis - Turf Fiber

Sustainability Comparison - Carpet Fiber

Most Sustainable Option: 1.5" Polyethylene Fibers

Overall Rationale: The lower pile height means that less polyethylene is required per square yard of field. This reduces energy consumption and raw material use at the manufacture stage, slightly reduces transportation impacts, and reduces the amount of materials that must be recycled or landfilled at end-of-life. This carpet also requires less infill than the 2.5" fiber carpet, which also reduces energy consumption and at the infill manufacturing stage and reduces the amount of infill that must be transported to the site, and ultimately the amount of infill material that must be recycled or landfilled at end-of-life. Field performance and maintenance is assumed to be equivalent or superior to the other carpet fibers considered in the analysis, including life span

Criteria Rankings

1 = least sustainable option

2 3

> 4 5 = most sustainable option

		2.5" Polyethylene Fibers	1.5" Polyethylene Fibers	2.5" Polyethylene with Thatch Layer	No Infill Polyethylene	No Infill Nylon
Life Cycle Stage	Sustainability Criteria	Score	Score	Score	Score	Score
Manufacturing of Turf	Energy required for resource extraction and processing	3	4	2	3	1
Components	Amount of non-renewable resource inputs	2	3	1	4	4
Components	Amount of recycled or reused inputs	2	2	2	2	2
Manufacturing Total		7	9	5	9	7
	Distance transported from manufacturer to site	3	3	3	3	3
Transport of Turf	Efficiency of transport mode	2	2	2	2	2
Components	Amount of packaging required to be transported	3	4	2	4	4
	Mass of material to be transported	2	3	2	4	4
Transport Total		10	12	6	13	13
	Amount of excavation required	3	3	3	3	3
Installation of Turf	Amount of aggregate/stone fill required	3	3	3	3	3
Components	Waste management options	4	4	1	1	1
	Energy required to operate machinery	3	3	3	4	4
	Installation Total	13	13	10	11	11
	Meets the functional requirements for intended use	5	5	5	1	1
Field Maintenance	Risk of exposure to toxic materials	4	4	4	4	4
and Performance	Energy required for maintenance activities	3	3	3	3	3
and Ferionnance	Water required for cleaning and cooling	3	3	3	3	3
	Life Span	4	5	4	2	2
	Maintenance and Performance Total	19	20	19	13	13
End of Life /	Ability to reuse the materials	2	2	2	2	2
Component	Ability to recycle the materials	3	3	2	3	3
Replacement	Risk of toxicity in landfill	2	2	2	2	2
Replacement	Amount of material that must go to landfill	2	3	1	4	4
End of Life Total		9 58	10	7	11	11
	Total Score		64	50	57	55

Life Cycle Analysis - Sand Infill

Sustainability Assessment - Sand Infill

Most Sustainable Option: Sand Local/Native

Overall Rationale: It is assumed that extraction processes are the same for both types of sand, and that installation, performance, maintenance, and end of life options are essentially the same. The differentiating factor for the local sand is that it is produced closer to the proposed project site and as a result, environmental impacts associated with transport of freight by truck (greenhouse gas emissions, criteria air contaminant emissions, fossil fuel consumption) are reduced relative to non-local sand option.

Relative Rankings

- 1 = least sustainable option
- 2
- 3 = general standard
- 4
- 5 = most sustainable option

		Sand - Silica (20- 40 mesh)	Sand - Local/Native
Life Cycle Stage	Sustainability Criteria	Score	Score
Manufacturing of Turf	Energy required for resource extraction and processing	3	3
	Amount of non-renewable resource inputs	2	2
Componenta	Amount of recycled or reused materials	1	1
	Manufacturing Total	6	6
	Distance transported from manufacturer to site	2	4
Transport of Turf	Efficiency of transport mode	2	2
Components	Amount of packaging required to be transported	3	3
	Mass of material to be transported	3	3
	Transport Total	10	12
	Amount of excavation required	3	3
Installation of Turf	Amount of aggregate/stone fill required	3	3
Components	Waste management options	3	3
	Energy required to operate machinery	3	3
	Installation Total	12	12
	Meets the functional requirements for intended use	5	5
Field Maintenance	Risk of exposure to toxic materials	1	1
and Performance	Energy required for maintenance activities	3	3
and Performance	Water required for cleaning and cooling	3	3
	Life Span	4	4
	Maintenance and Performance Total	16	16
End of Life /	Ability to reuse the materials	2	2
Component	Ability to recycle the materials	2	2
Replacement	Risk of toxicity in landfill	1	1
Replacement	Amount of material that must go to landfill	2	2
	End of Life Total	7	7
	Total Score	51	53

Life Cycle Analysis - Infill

Sustainability Comparison - Infili

Most Sustainable Option: Coconut Fiber and Sand

Overall Rationale: The coconut component of this infill is made from all natural, pre-consumer recycled fibers, which provides advantages over the other infill types in energy intensity of manufacturing, use of non-renewable resources, and amount of recycled material inputs.

One weakness of the coconut-sand infill is that coconut fibers are shipped from India to Italy for manufacturing, and the overall manufactured product is shipped to the U.S. from Italy; however, over 90% of this shipping is by ocean freighter, which is the most efficient form of freight transportation. This infill has a distinct sustainability advantage at the end of life stage, as the material is all-natural, more recyclable, and less likely to go to landfill

Relative Rankings

1 = least sustainable option

2

3 = general standard

4

5 = most sustainable option

		50% Sand / 50%	Cocunut Fiber and	FlexSand	80% TPE /
		SBR	Sand		20% Sand
Life Cycle Stage	Sustainability Criteria	Score	Score	Score	Score
Manufacturing of Turi Components	Energy required for resource extraction and processing	3	4	2	1
	Energy required for resource extraction and processing Amount of non-renewable resource inputs	3	4	1	1
	Amount of recycled or reused materials	3	4	1	1
Manufacturing Total		9	12	4	3
	Distance transported from manufacturer to site	3	1	3	4
Transport of Turf	Efficiency of transport mode	2	4	2	2
Components	Amount of packaging required to be transported	3	2	3	3
	Mass of material to be transported	3	3	3	3
Transport Total		11	10	11	12
	Amount of excavation required	3	3	3	3
Installation of Turf	Amount of aggregate/stone fill required	3	3	3	3
Components	Waste management options	3	3	3	3
	Energy required to operate machinery	3	3	3	3
Installation Total		12	12	12	12
	Meets the functional requirements for intended use	5	5	5	5
Field Maintenance	Risk of exposure to toxic materials	2	5	3	4
and Performance	Energy required for maintenance activities	3	3	3	4
and Performance	Water required for cleaning and cooling	2	3	4	4
	Life Span	4	4	4	4
	Maintenance and Performance Total	16	20	19	21
End of Life / Component Replacement	Ability to reuse the materials	2	4	2	2
	Ability to recycle the materials	2	4	2	4
	Risk of toxicity in landfill	3	4	3	4
Replacement	Amount of material that must go to landfill	3	4	3	3
	End of Life Total		16	10	13
	Total Score	58	70	56	61

Life Cycle Analysis – Pad or Underlayment

Sustainability Comparison - Underlayment

Most Sustainable Option: Brock Panel

Overall Rationale: The Brock Panel and Rubber Roll are relatively comparable in terms of the sustainability criteria considered in this analysis. The disadvantage of the Brock Panel is that it is manufactured from virgin polypropylene, whereas the other two underlay options are made primarily from recycled materials. Two distinct sustainability advantages for the Brock Panel are in the transportation stage, where the lighter weight of the product and the more compact packaging style can improve transport efficiencies relative to the other two options, and at the end of life stage, because the manufacturer will take the product back and recycle it when the useful life is complete.

Relative Rankings

1 = least sustainable option

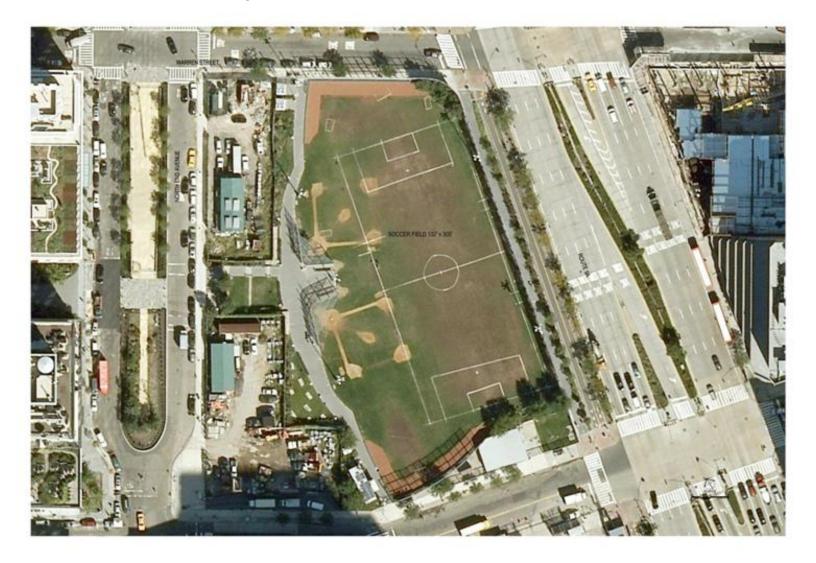
2

3

5 = most sustainable option

		E-Layer	Rubber Roll	Brock Panel
Life Cycle Stage	Sustainability Criteria	Score	Score	Score
Manufacturing of Turi	Energy required for resource extraction and processing	2	4	1
	Amount of non-renewable resource inputs	2	4	1
Componenta	Amount of recycled or reused materials	3	4	1
Manufacturing Total		7	12	3
	Distance transported from manufacturer to site	3	3	2
Transport of Turf	Efficiency of transport mode	2	2	2
Components	Amount of packaging required to be transported	2	2	4
	Mass of material to be transported	1	2	4
Transport Total		8	9	12
	Amount of excavation required	3	3	3
Installation of Turf	Amount of aggregate/stone fill required	3	3	3
Components	Waste management options	3	3	3
	Energy required to operate machinery	2	3	4
Installation Total		11	12	13
	Meets the functional requirements for intended use	5	5	5
Field Maintenance	Risk of exposure to toxic materials	2	2	3
and Performance	Energy required for maintenance activities	3	3	3
and Performance	Water required for cleaning and cooling	3	3	3
	Life Span	4	4	4
Maintenance and Performance Total		17	17	18
F	Ability to reuse the materials	1	4	4
End of Life / Component Replacement	Ability to recycle the materials	1	3	5
	Risk of toxicity in landfill	2	2	4
	Amount of material that must go to landfill	1	2	4
	End of Life Total	5	11	17
	Total Score	48	61	63

Life Cycle Analysis – System

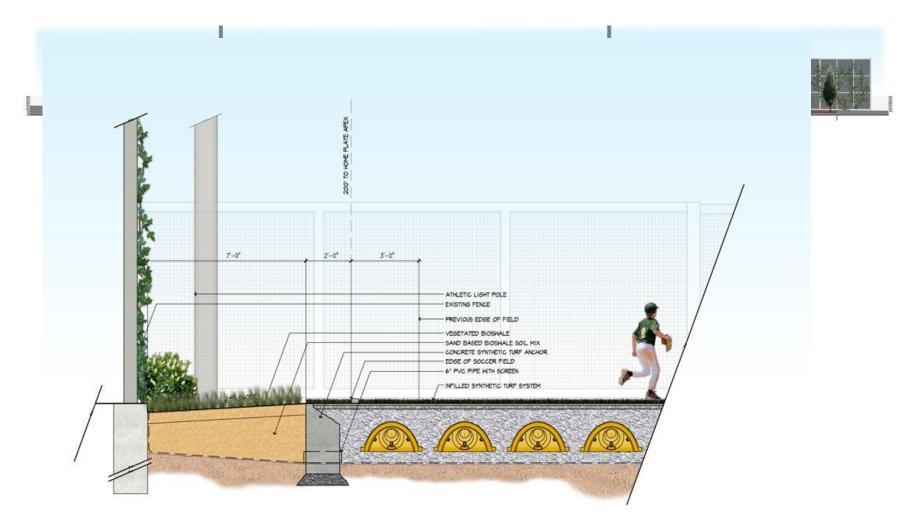


Turf Temperatures

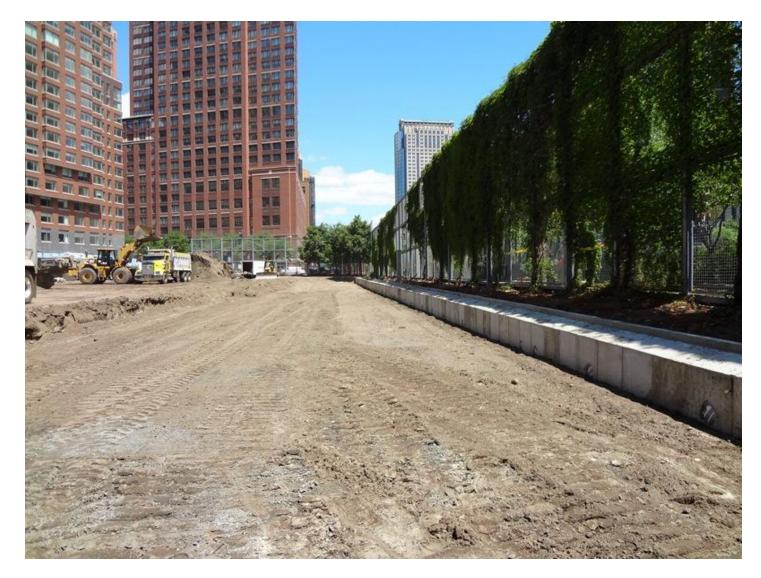
Site Specific – Existing Plan

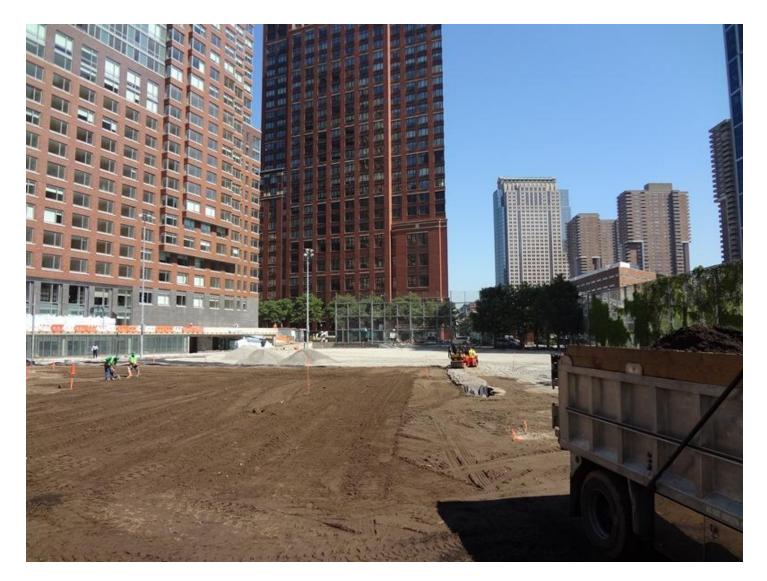
Site Specific – Proposed Plan

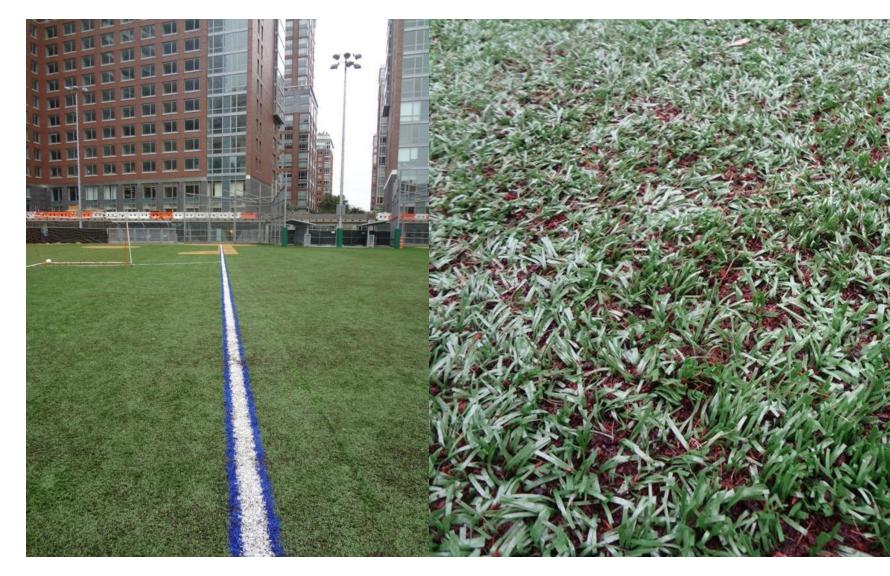
Site Specific – Base & Drainage; Existing & Proposed



Site Specific – Filter & Storage









Open for Soccer

Open for Soccer

community ball fields Battery Park City Authority

Open for Soccer

Synthetic Turf Toxicological Review - Human Health & Environmental

- LITERATURE REVIEW
- Task objective Review and evaluate the available literature to determine if there is the potential for risk of harm to human health and/or the environment as related to exposure to synthetic turf.
- 3 phase method was used :

•Tier I: search

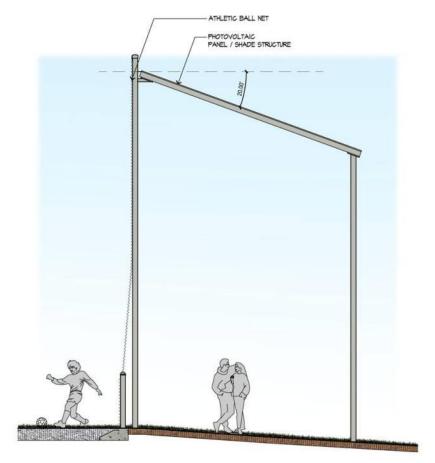
Tier II: screening

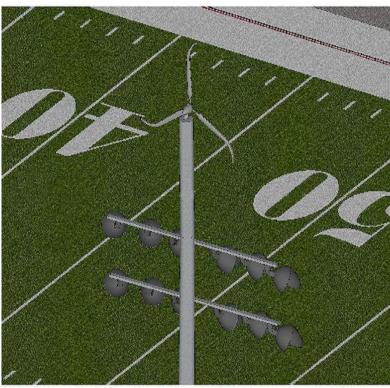
Tier III: thorough evaluation

 Our findings were similar to the reports by CPSC and EPA, which suggest no human health or environmental concern with the crumb rubber infill material, but does not take into account heat or filtration.

Sports Lighting Upgrade

Positive of Fixture Replacement


- Energy Consumption Reduced Over 50%
- Light Quality Improved
- Angle and Spill Control Improved
- Controls for Each Field and Ice Rink; Saving More Energy of the Existing System


Negatives

Cost – Installed Estimated Quote \$145,000 -\$160,000

Consensus on Photovoltaic and Wind Turbines

CASE STUDY: battery park city community ball fields

Stantec Sport

David Nardone, RLA, LEED AP Stantec Sport Group Leader (617) 792-6468 david.nardone@stantec.com

Patrick Maguire President (617) 834-7286 epm@activitas.com

