# Seedbanking, seeding rates, and increased nitrogen fertility

Andrew Hoiberg
Ph.D. Student
Iowa State University

## Why?

Quicker establishment

Concentration of resources

Combating high traffic areas

Sustainability

#### Seedbanking

- Reserves of viable seeds in soil and surface
- Transient vs. persistent (Bewley and Black, 1994)
  - Short lived (1 yr or less) vs. long lived
- Seed size
  - Small = better potential for banking (Thompson, 1987)
- Perennial ryegrass low numbers in soil (Roberts, 1981)
- Poa spp. traditionally high (annua)

## Seedbanking

- Human intervention
  - How do seeding rates affect seedbanking potential?
- Can we form a transient seedbank?
- Incorporation of seed into soil
  - "Cleating in" ¾" cleats
- Short term evaluation
- Common recommendation for sports fields
  - Build up a 'seedbank' popular literature
- Need research to examine this trend

#### Nitrogen rate

- What do we know? (Cockerham et al., 1993)
  - Highest need in turf
  - Often severely deficient
  - Too little, biomass lacks
  - Too much, wear tolerance lacks
  - Will increase aboveground biomass
    - The single most important factor in determining shear strength, resilience, and wear tolerance is above ground biomass (Canaway, 1983)
  - Root biomass decreases
  - High seeding rates?


## Initial study

• Fall 2008

Seeded KBG at 3 lb 1000 ft<sup>2</sup>

- No traffic applied
- N rates of 2, 4, 6, 8, 10 lb 1000 ft<sup>2</sup> applied
  - Evenly divided applications over 8 weeks

#### Seeded 9-4-08, Total N applied in Sept and Oct



#### Three experiments

- 1. Fate of seed in soil
  - What happens to seed when we plant it?

- 2. Seedling emergence
  - What practices lead to "banked" seed?

- 3. Fertility based establishment
  - Can increased inputs of N = more/quicker cover?

#### 1. Fate of seed in soil

- Initiated 20 September 2009
  - ISU Horticulture research station
- Seed buried in nylon mesh
  - Easy retrieval, permeability, containment
- Buried at 1" depth (3/4" cleated in depth)
- 3 x 400 seeds on each of 3 retrieval dates
  - End of traffic season, following spring, 1 yr later
- Ideal planting depth?

## Methodology







## Analysis

Non-germinated isolated

Germination chambers - greenhouse

Monitored for germination

- PR: 14-21 days; KB: 21+ days

Forceps tested

TZ stained



## 1<sup>st</sup> year results - KBG

Initial germination, secondary germination, abnormal germination, and non viable (dead) seeds of Kentucky bluegrass from three replications buried at one inch depth in Sept 2009, recovered in Dec 2009.

| KBG    |       |             |              |             |       |             |               |
|--------|-------|-------------|--------------|-------------|-------|-------------|---------------|
|        |       | Initial     | Secondary    |             |       |             |               |
|        | Total | Germination | germination  | Abnormal    | Dead  |             | Initial       |
| Sample | Seeds | (In Field)  | (Greenhouse) | germination | seeds | Viable seed | germination % |
| 1      | 400   | 338         | 0            | 0           | 62    | 0           | 0.845         |
| 2      | 400   | 337         | 1            | 6           | 53    | 3           | 0.8425        |
| 3      | 400   | 341         | 0            | 1           | 58    | 0           | 0.8525        |
| Mean   | 400   | 338.67      | 0.33         | 2.33        | 57.67 | 1.00        | 84.67%        |

Initial germination, secondary germination, abnormal germination, and non viable (dead) seeds of Kentucky bluegrass from three replications buried at one inch depth in Sept 2009, recovered in April 2010.

| KBG    |       |             |              |             |       |             |               |
|--------|-------|-------------|--------------|-------------|-------|-------------|---------------|
|        |       | Initial     | Secondary    |             |       |             |               |
|        | Total | Germination | germination  | Abnormal    | Dead  |             | Initial       |
| Sample | Seeds | (In Field)  | (Greenhouse) | germination | seeds | Viable seed | germination % |
| 1      | 400   | 364         | 0            | 0           | 36    | 0           | 0.91          |
| 2      | 400   | 363         | 0            | 0           | 37    | 0           | 0.9075        |
| 3      | 400   | 375         | 0            | 0           | 24    | 1           | 0.9375        |
| Mean   | 400   | 367.33      | 0.00         | 0.00        | 32.33 | 0.33        | 91.83%        |

## 1<sup>st</sup> year results - PR

Initial germination, secondary germination, abnormal germination, and non viable (dead) seeds of perennial ryegrass from three replications buried at one inch depth in Sept 2009, recovered in Dec 2009.

| PR     |       |             |              |             |       |             |               |
|--------|-------|-------------|--------------|-------------|-------|-------------|---------------|
|        |       | Initial     | Secondary    |             |       |             |               |
|        | Total | Germination | germination  | Abnormal    | Dead  |             | Initial       |
| Sample | Seeds | (In Field)  | (Greenhouse) | germination | seeds | Viable seed | germination % |
| 1      | 400   | 358         | 1            | 0           | 41    | 0           | 0.895         |
| 2      | 400   | 353         | 2            | 0           | 45    | 0           | 0.8825        |
| 3      | 400   | 345         | 1            | 0           | 53    | 1           | 0.8625        |
| Mean   | 400   | 352.00      | 1.33         | 0.00        | 46.33 | 0.33        | 88.00%        |

Initial germination, secondary germination, abnormal germination, and non viable (dead) seeds of perennial ryegrass from three replications buried at one inch depth in Sept 2009, recovered in April 2010.

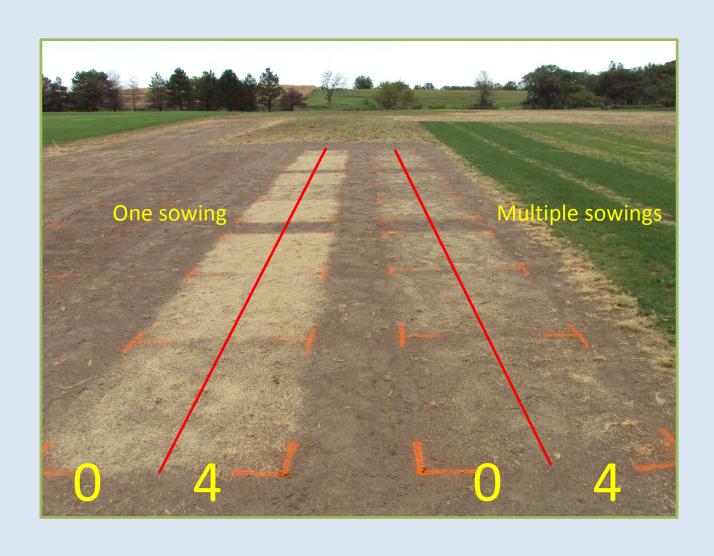
| PR     |       |             |              |             |       |             |               |
|--------|-------|-------------|--------------|-------------|-------|-------------|---------------|
|        |       | Initial     | Secondary    |             |       |             |               |
|        | Total | Germination | germination  | Abnormal    | Dead  |             | Initial       |
| Sample | Seeds | (In Field)  | (Greenhouse) | germination | seeds | Viable seed | germination % |
| 1      | 400   | 355         | 0            | 0           | 45    | 0           | 0.8875        |
| 2      | 400   | 358         | 0            | 0           | 42    | 0           | 0.895         |
| 3      | 400   | 389         | 0            | 0           | 11    | 0           | 0.9725        |
| Mean   | 400   | 367.33      | 0.00         | 0.00        | 32.67 | 0.00        | 91.83%        |

#### Results

Most seed germinates at 1"

Seed leftover is mostly non-viable (dead)

Year 2 currently being analyzed


Limited long term viability at 1" depth

Representing a "one time" seeding

#### 2. Seedling emergence

- Seed at higher than normal rates (increase input)
  - PR: 30, 60, 90 lb 1000 ft<sup>-2</sup>
  - KB: 6, 12, 24 lb 1000 ft<sup>-2</sup>
- Two seeding regimes
  - All at once vs. multiple seedings
- Two traffic rates
  - How will traffic affect seedbank potential?
  - No traffic vs. 4 passes/week

## Plot layout



## Methods







## Methods









#### **Analysis**

- Percentage cover
  - Sept, Oct, Nov
  - Digital image analysis

- Seedling emergence
  - 3 sample dates (Dec, Apr, Sept)
  - Top 1" sliced off core, broken up
  - Spread to ~ ½" in 8" AZ pot
  - Emerged seedlings counted, stirred, counted

#### Percentage cover

#### **Kentucky bluegrass**

Mean values for percentage PR turf cover in Sept, Oct, Nov, and Dec 2010 averaged over three replications.

| Source       |    |      | Mon          | th           |          |
|--------------|----|------|--------------|--------------|----------|
| 2010         |    | Sept | Oct          | Nov          | Dec      |
| Seeding Rate | df |      | Percent tu   | rf cover     |          |
| 30           | 2  | 36.8 | 66.7         | 59.6         | 58.0     |
| 60           | 2  | 53.8 | 78.9         | 73.8         | 68.7     |
| 90           | 2  | 62.8 | 81.9         | 79.6         | 72.6     |
| ISD.         |    | 7.5  | 2 1          | <b>8</b> 1   | 6.2      |
| 30<br>60     | 2  | 53.8 | 66.7<br>78.9 | 59.6<br>73.8 | 68<br>72 |

 One time seeding resulted in 33% greater turf cover

#### **Perennial ryegrass**

Mean values for percentage KBG turf cover in Sept, Oct, Nov, and Dec 2010 averaged over three replications.

| Source                |    |      | Mon        | th       |      |
|-----------------------|----|------|------------|----------|------|
| 2010                  |    | Sept | Oct        | Nov      | Dec  |
| Seeding Rate          | df |      | Percent tu | rf cover |      |
| 6                     | 2  | 4.1  | 13.5       | 19.9     | 20.1 |
| 12                    | 2  | 9.9  | 19.3       | 23.3     | 21.4 |
| 24                    | 2  | 16.7 | 22.6       | 26.5     | 21.1 |
|                       |    | 10.7 | 22.0       | 20.5     | 21.1 |
| LSD <sub>(0.05)</sub> |    | 4.4  | 5.6        | 4.1      | NS   |

 One time seeding resulted in 18% greater turf cover

## Emerged seedlings

#### Kentucky bluegrass

#### **Perennial ryegrass**

Mean Kentucky bluegrass seedling emergence from top one inch of soil cores over three replications in Dec 2009, Apr 2010, and Sept 2010.

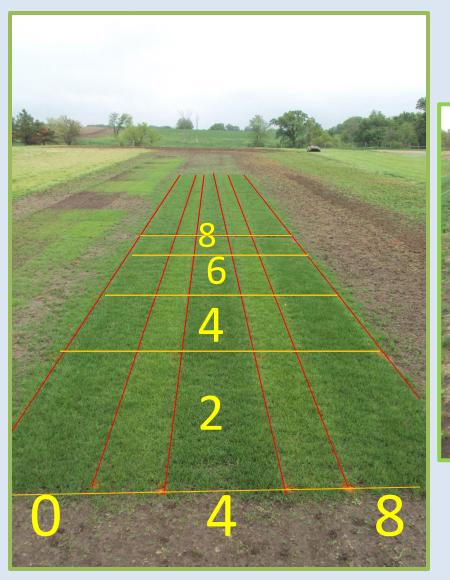
|    |                             | Month                                                             |                                                                                                                                               |
|----|-----------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|    | Dec, 2009                   | Apr, 2010                                                         | Sept, 2010                                                                                                                                    |
| df | See                         | dlings emer                                                       | ged                                                                                                                                           |
| 6  | 10.6                        | 0.8                                                               | 1.8                                                                                                                                           |
| 6  | 4.3                         | 0.1                                                               | 0.9                                                                                                                                           |
| 6  | 40.7                        | 3.2                                                               | 0.9                                                                                                                                           |
| 6  | 36.3                        | 1.2                                                               | 0.9                                                                                                                                           |
|    | NS                          | 2.0                                                               | NS                                                                                                                                            |
| df | See                         | dlings emer                                                       | ged                                                                                                                                           |
| 4  | 15.4                        | 0.7                                                               | 1.5                                                                                                                                           |
| 4  | 27.2                        | 1.4                                                               | 0.8                                                                                                                                           |
| 4  | 26.3                        | 1.9                                                               | 1.1                                                                                                                                           |
|    | NS                          | NS                                                                | NS                                                                                                                                            |
|    | 6<br>6<br>6<br>df<br>4<br>4 | df See 6 10.6 6 4.3 6 40.7 6 36.3  NS df See 4 15.4 4 27.2 4 26.3 | Dec, 2009 Apr, 2010  df Seedlings emer 6 10.6 0.8 6 4.3 0.1 6 40.7 3.2 6 36.3 1.2  NS 2.0  df Seedlings emer 4 15.4 0.7 4 27.2 1.4 4 26.3 1.9 |

Mean perennial ryegrass seedling emergence from top one inch of soil cores over three replications in Dec 2009, Apr 2010, and Sept 2010.

| Source                       | Month |                   |             |            |  |  |
|------------------------------|-------|-------------------|-------------|------------|--|--|
| 2009-2010                    |       | Dec, 2009         | Apr, 2010   | Sept, 2010 |  |  |
| Seeding regime/traffic level | df    | Seedlings emerged |             |            |  |  |
| One - no traffic             | 6     | 3.8               | 5.8         | 0.2        |  |  |
| One - 4 passes/wk            | 6     | 1.7               | 3.4         | 1.0        |  |  |
| Multiple - no traffic        | 6     | 172.4             | 32.1        | 0.2        |  |  |
| Multiple - 4 passes/wk       | 6     | 112.1             | 19.8        | 0.0        |  |  |
| LSD <sub>(0.05)</sub>        |       | 37.1              | 7.3         | NS         |  |  |
| Seedrate                     | df    | See               | dlings emer | ged        |  |  |
| 30                           | 4     | 39.3              | 15.0        | 0.0        |  |  |
| 60                           | 4     | 64.0              | 15.3        | 0.4        |  |  |
| 90                           | 4     | 114.3             | 15.5        | 0.8        |  |  |
| LSD <sub>(0.05)</sub>        |       | 28.1              | NS          | 0.5        |  |  |

#### Calculated lb "available" seed

| Seedrate (lb 1000 ft <sup>-2</sup> ) | Mean emerged seedlings 12.6 in <sup>-2</sup> (In December 2009) | lb available seed 1000 ft <sup>-2</sup> |
|--------------------------------------|-----------------------------------------------------------------|-----------------------------------------|
| 30                                   | 40                                                              | 2                                       |
| 60                                   | 64                                                              | 3                                       |
| 90                                   | 114                                                             | 6                                       |


#### Results

- Percentage cover follows with previous results
- One time vs. multiple
  - Percentage cover
  - Emerged seedlings
- Bare soil situations, seed germinates
  - Limited viability in single seeding regime
  - Multiple inputs increase available seed
- Combination of techniques for best results

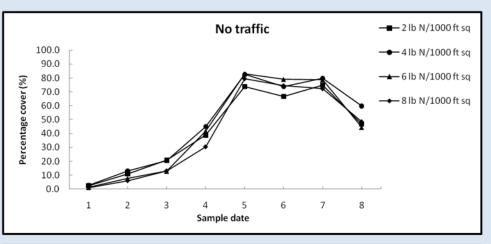
## 3. Fertility (N) based establishment

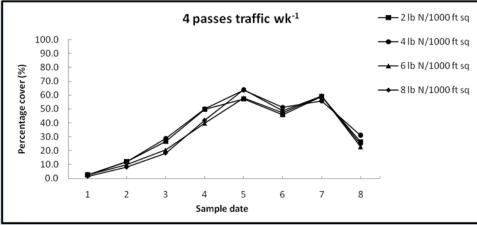
- One seeding rate per species
  - KB: 5 lb 1000 ft<sup>-2</sup>
  - PR: 30 lb 1000 ft<sup>-2</sup>
- Four nitrogen rates (urea)
  - $-2, 4, 6, 8 lb 1000 ft^{-2}$
  - Eight equal applications (.25, .5, .75, 1.0 x 8)
- Three traffic levels (0, 4, 8)
  - Spring traffic applied after establishment
  - Fall traffic applied 1 week after seeding

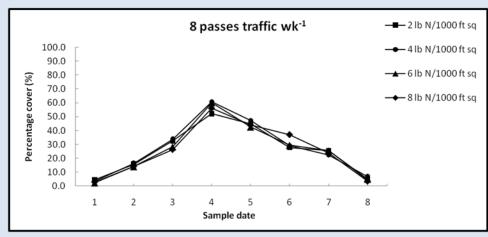
## Plot layout



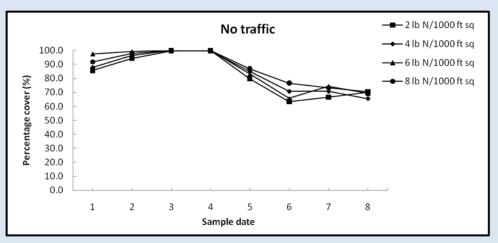


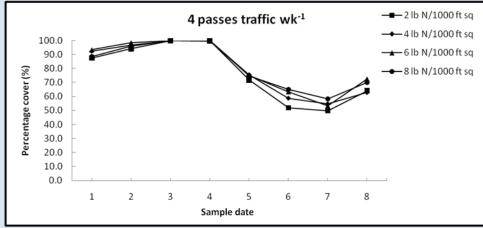

## Analysis

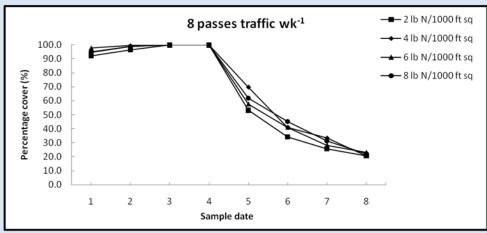

- Percentage cover
  - Digital image analysis


 Will determine if increased N inputs affect establishment and wear tolerance

- Potential to use weather data
  - More rain = more leached N?


#### Kentucky bluegrass






## Perennial ryegrass







#### Results

No main effect of nitrogen in spring or fall

Contrasts preliminary study

 Incremental increase in N does not appear to decrease wear tolerance

 Nitrogen effects may be masked by high seeding rates

#### Questions?

• Contact:

Andrew Hoiberg

Iowa State University

android@iastate.edu

THANKS!