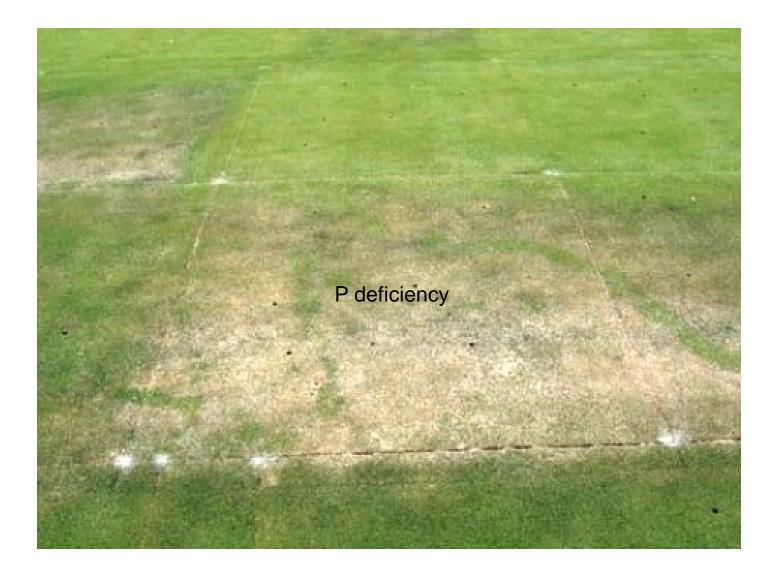
Perceived and Real Environmental Impacts of Phosphorus


Gwen Stahnke, Washington State University Beth Guertal, Auburn University Brian Horgan, University of Minnesota

Phosphorus

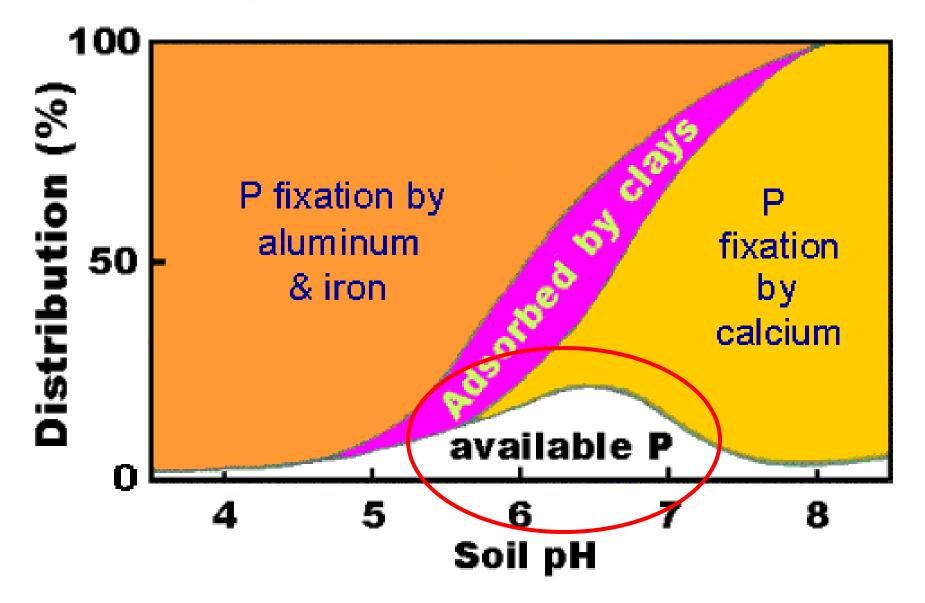
- Macronutrient along with N & P, typically applied in larger quantities than other nutrients
- Use a soil test to determine adequate levels in soil
- Percent in dry turfgrass leaf tissue -0.25 - 0.60% (Mills and Jones, 1996)

Why you need P:

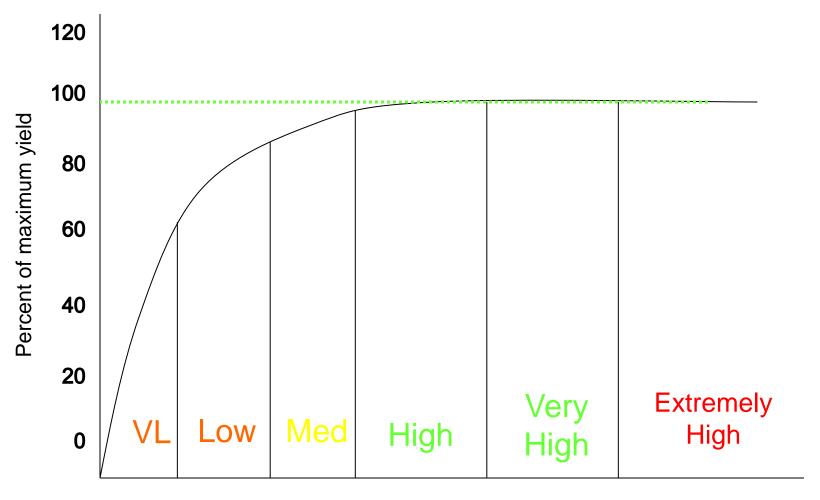
- ADP and ATP energy transformations in plants.
- Essential part of DNA.
- Root development, especially lateral and fibrous roots.
- Crop maturity flowering, fruiting, seed formation.
- Straw strength in cereal crops.

From D. Soldat, University of WI, creeping bentgrass

P deficiency - corn

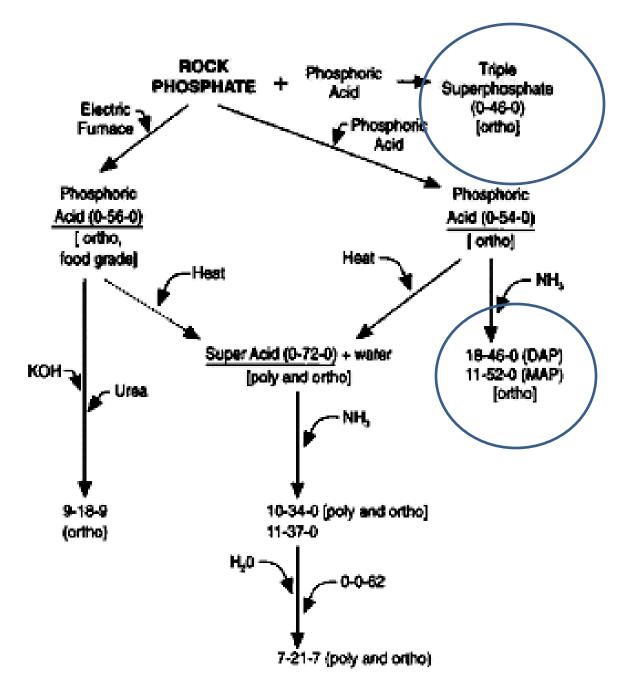

Where Do You Need P? Phosphorus in the Soil

- total P in soil is low (~1/10th of N and 1/20th of K)
- most of the native P is not available to plants insoluble
- over time, P added to soil (ex: fertilizer) is fixed, and becomes unavailable to plants
- environmental influences, such as grass species, soil type, rainfall, temperatures and use of the area all determine nutrient needs
- there is both organic and inorganic soil P


Inorganic P in the Soil

- Two big groups: 1) Calcium phosphates, and 2) Iron and Aluminum phosphates.
- The P that a turfgrass plant can use (H₂PO₄) is a very small portion of the total P.
- When fertilizer P is added, turfgrasses have an uptake efficiency of around 10 to 40%, with the remaining fertilizer P fixed into unavailable forms

Where Inorganic P is in the Soil.....


How that Affects P Fertilizer Recommendations.....

P in Soil

P Fertilizer Sources

- Triple super phosphate (TSP) 0-44-0
- Diammonium phosphate
- Monoammonium phosphate
- Rock phosphate not a soluble source of P

Calphos[™] is a natural, untreated Soft Rock Phosphate (0-3-0) with colloidal clay containing valuable trace minerals in addition to phosphorus. Since phosphorus is lacking in most soils, applications are a must for superior results. Contains a minimum of 3% available (and a minimum of 20% total) phosphoric acid (P2O5) and 20% Calcium (Ca). OMRI Listed for use in organic production.

Once applied, Calphos[™] remains in the soil until used by the plants - will not leach. Ideal for fruiting and flowering plants, it stimulates strong root formation, hastens crop maturity and encourages earthworms and soil bacteria.

DIRECTIONS FOR USE:

Broadcast 50 lbs. per 1,000 square feet (65 lb P2O5/A) or side dress around existing plants.

Note: Because of its natural fineness, Calphos[™] is quick acting, like superphosphate. Because it is relatively insoluble, and therefore not subject to leaching, it will last in the soil for a long time.

ROCK PHOSPHATE

Example P Soil-Test Recommendations.....

CAMEVO, AU

						L TEST R	ESULTS	RECOMMENDATIONS				
LAB No.	SENDER'S SAMPLE DESIGNATION		SOIL* GROUP	pH**	Phosphorus p***	Potassium K***	Magnesium Mg***	Calcium Ca***	LIME- Stone	N	P205	к ₂ 0
			<u> </u>		Pounds per acre				Tons/acre	Pounds per acre		cre
14208	NEW S 201 SEE COMMENT 59	GOLF GREEN	1	7.0	H 100	M 62	H 61	1010	0.0	400	0	130
14209	NEW S 202 SEE COMMENT 55	GOLF GREEN	1	6.9	VH 141	M 94	H 84	440	0.0	400	0	80
14210	NEW S 203 SEE COMMENT 62	GOLF GREEN	1	6.1	M 27	M 70	H 59	580	0.0	400	130	110
14211	NEW S 301 SEE COMMENT 62	GOLF GREEN	1	6.2	M 32	M 97	H 56	620	0.0	400	120	80
14212	NEW S 302 SEE COMMENT 55	GOLF GREEN	1	6.7	VH 157	M 116	H 123	480	0.0	400	0	50
14213	NEW S 303 SEE COMMENT 55	GOLF GREEN	1	6.7	VH 115	M 81	H 83	640	0.0	400	0	100
14214	NEW S 401 SEE COMMENT 56	GOLF GREEN	1	6.9	VH 105	L 57	H 87	740	0.0	400	0	130
14215	NEW S 402	Golf Green	1	6.4	L 19	M 71	H 57	560	0.0	400	150	110

1. Sandy soils (CEC < 4.6 $\text{cmol}_{c}\text{kg}^{-1}$) 2. Loams & Light clays (CEC = 4.6-9.0 $\text{cmol}_{c}\text{kg}^{-1}$)

3. Clays and soils high in organic matter(CEC > 9.0 cmol_ckg⁻¹) 4. Clays of the Blackbelt(CEC > 9.0 cmol_ckg⁻¹)

7.4 or higher - Alkaline

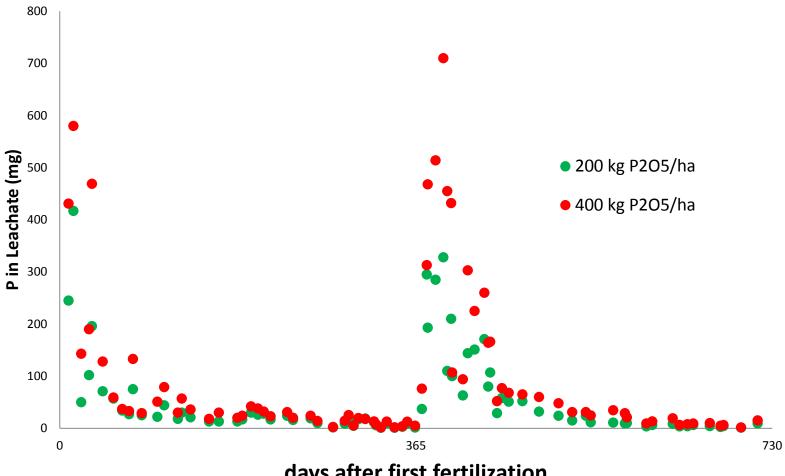
6.6-7.3 - Neutral

6.5 or lower - Acid

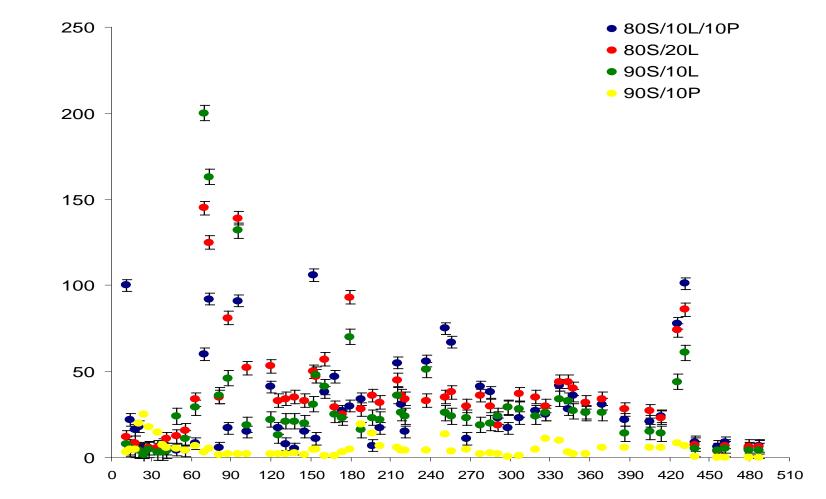
5.5 or lower - Strongly Acid

** Extractable nutrients in pounds per acre

What happens when your soil-test P gets too high?

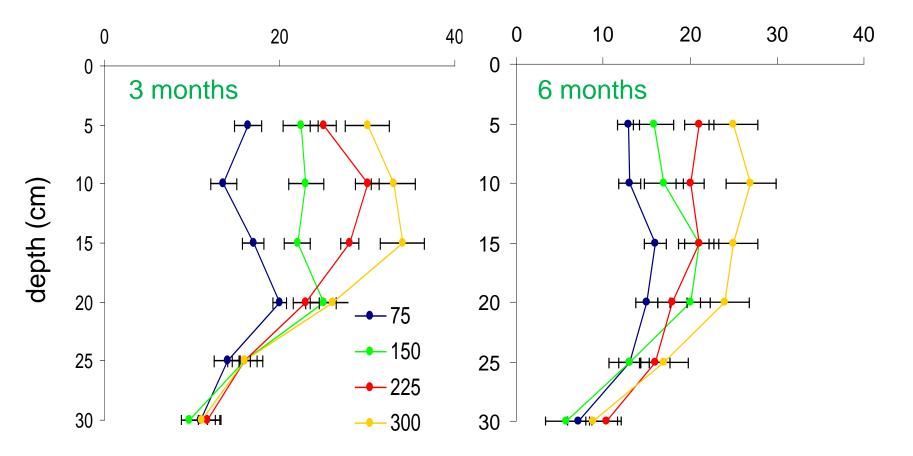

Loss of P in Runoff.....

Forms of P in Water – Boring, but it matters


- Soluble P P dissolved in water, typically a filtered sample.
- Total P P in water plus that attached to sediment (runoff not filtered).
- Orthophosphate soluble P (may also be called dissolved or reactive P)
- Bioavailable P dissolved and particulate P
- EPA water quality threshold is 0.1 mg L⁻¹.

Phosphorus in Leachate as Affected by P Rate

days after first fertilization


What happens when your soil-test P gets too high? Loss of P as leachate in very sandy soils...

days after construction

P in leachate (ug/ml)

Fertilizer Evaluation Soil-test P in sand-based putting greens, AU Club

Mehlich extractable P (mg kg⁻¹)

Shapiro et al., 1974

- Study conducted on health of lakes in TCMA
- Street sweeping reduces P concentration in runoff

Time of Year	Storm Drain TP Conc						
Feb. to mid-June	0.587 mg/L						
Mid-June to mid-Oct.	0.256 mg/L						
Oct. after leaf fall	1.095 mg/L						

Barten and Jahnke, 1997

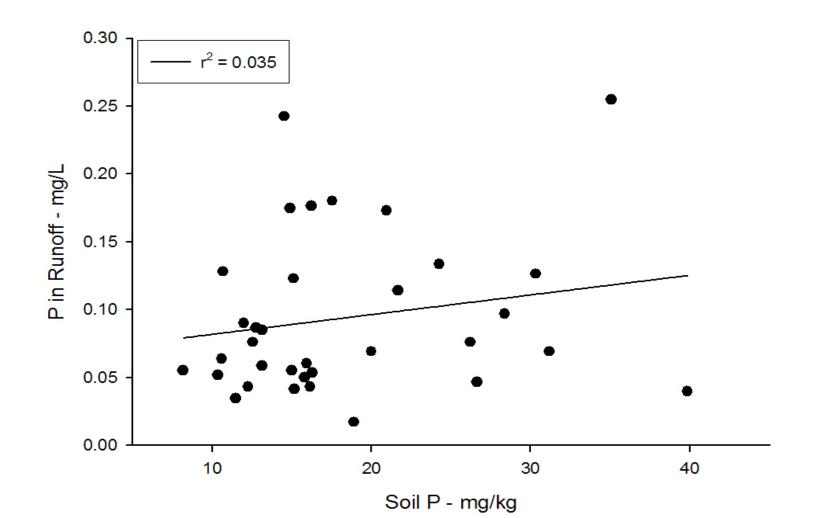
- Concluded phosphorus runoff to surface water bodies was from applied P fertilizer
 - Not from landscape vegetation
- Sampled from May to October
 - 70-90% of annual runoff occurs from Dec-March
- Did not measure runoff water volumes
 - Assumed 10% volume of runoff
 - Assumed all lawns have same runoff volume
- Other research: mean annual runoff ~ 1.1%

Barten and Jahnke, 1997

• Concluded phosphorus runoff to surface water bodies was from applied P fertilizer

Not from landscape vegetation

- Sampled from May to October
 - 70% of annual runoff occurs from Dec-March
- Did not measure runoff water volumes
 - Assumed 10% volume of runoff
 - Assumed all lawns have same runoff volume
- Other research: mean annual runoff ~ 1.1%


Kussow, 2001

- Small but consistent release of P into urban surface water from vegetation regardless of whether fertilizer is applied
 - Agrees with Shuman et al, 1994
- Healthy turf reduces water runoff volume and particulate P bound to soil

Soil P level and P runoff with turf (sandy

loam, 4 yr old turf- Kbg /p. ryegrass , Soldat PhD Thesis, 2007)

P in Runoff with Turfgrass

Phosphorus Runoff and Landscape use: Agriculture

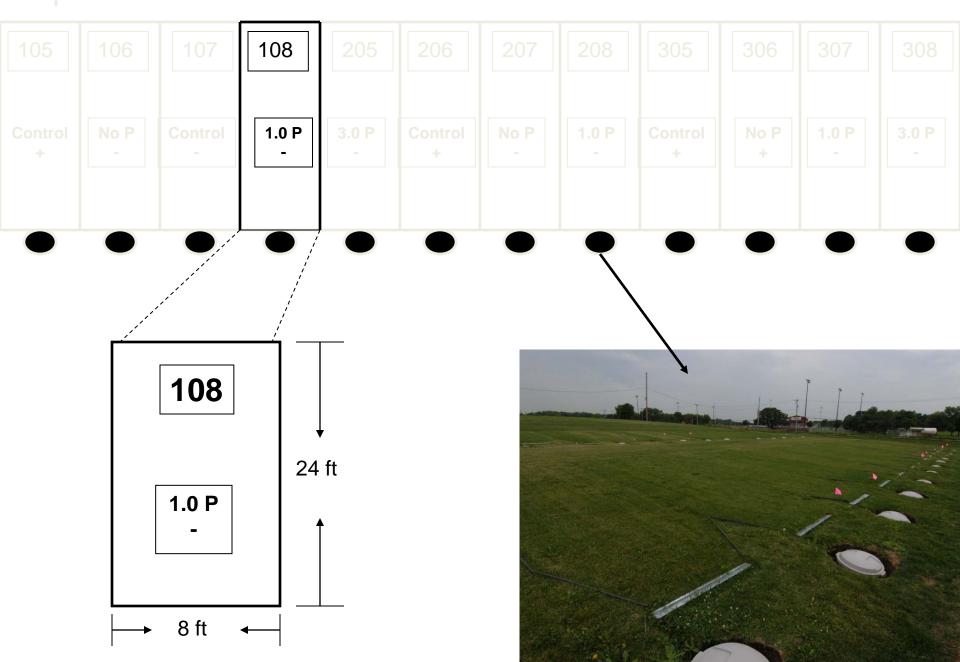
Land Use	Soluble	e P Pa	Particulate P					
		lb. P/A/year						
Fallow	0.10		33.2					
Conven. Cor	n 0.27		13.5					
No-till Corn	0.98		1.9					
Нау	0.39	0.02						

Sources: Sharpley and Menzel, 1987; Rehm, et al., 1997.

MN RESEARCH OBJECTIVES

- Evaluate the effect of grass clipping management and fertilizer inputs on P runoff from homelawns
- Improve the current understanding of chemical transport with runoff from fairway turf
- Evaluate the ability of management practices to mitigate chemical transport with rainfall runoff
- Quantify the transport of snow-mold fungicides and late-fall fertilizer with rainfall and snowmelt runoff

Turf Plots: Home Lawn


Constructed and maintained as a home lawn

- Compacted the soil, installed and irrigation system, sod
- Plot size: 8 ft wide x 24 ft long, 5 % slope (1% within field site)

- Turfgrass species: Kentucky bluegrass
- Managed at various levels of homelawns
 (3 in height of cut)

N

N

		•	٠		٠	•		•	
SC	Place								
).
			No the second se						
							MANUAL CONTRACTOR		

Turf Plots: Home Lawn

<u>2005</u>

- 1. no fertilizer
- 2. no phosphorus (N and K)
- 3. complete (1 lb P_2O_5)
- 4. complete (3 lbs P_2O_5)

<u> 2006 - 2009</u>

- 1. no fertilizer
- 2. no phosphorus (N and K)
- 3. complete (0.33 lb P_2O_5)
- 4. complete (1 lb P_2O_5)

Runoff Results

700 □ Control ■ No P □ 1.0 P □ 3.0 P B - B - B - A 600 B - B - B - A B - B - B - A AB-B-AB - A 100 B - B - B - A 0 2 3 5 6 17 1 4

Soluble Phosphorus Runoff from Frozen Soil (2005)

Runoff Event

P runoff: 5 yrs of data

- [TP] and [RP] in runoff, soil test P and tissue [P] increased linearly with increasing P fertilizer application rate
- 86% of P runoff when soil was frozen
- 78% of runoff depth when soil frozen
- ~72% of runoff P was RP
- TP runoff ranged from 0.002 to 0.03 lbs per 1000 ft²
- P runoff can be reduced without affecting turf quality by not applying P fertilizer when soil test P levels are high
- Properly fertilized turf can reduce P runoff

Runoff of P – Some Conclusions

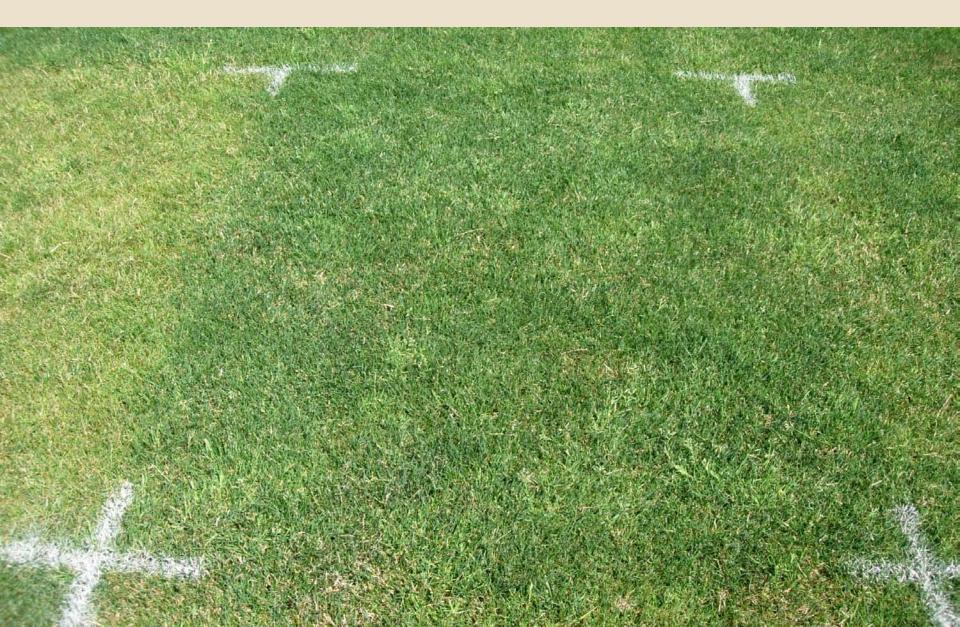
- Bare soil/thin turf prone for greater loss via P-sediment erosion.
- Greater P losses if irrigation/rainfall follows immediately after application.
- Majority of P in runoff occurred in snowmelt.
- Inclusion of buffer strips significantly reduces
 P in runoff.

Phosphites?

- Phosphite has one less O than phosphate.
- It is more soluble than phosphate, making leaf and root uptake more efficient.
- Phosphite is slowly converted to phosphate (3 to 4 months) (soil or foliage applied).
- Phosphite has proven fungicidal properties, breaks down very slowly in soil to plant available forms of P.
- Thus, cannot replace P fertilizers (phosphate).

Phosphite as a Fungicide

- Annual crops initially is a poor source of P for short cycle crops.
- However, when crops are planted into previously phosphite fertilized soil do as well as those in phosphate-fertilized soil.
- Phosphite inhibits *Phytophthora* and *Pythium* (Aliette (FosetyI-AI)).
- Since trademark patent expired many phosphite products have entered the market, with many advertised and registered as fertilizers.
- Many are some type of potassium phosphite.
- Growing evidence that foliar application (fruit crops, nut crops) has positive benefits beyond that of a fungicide.


- » Soluble, Quick-release fertilizers
- Slow-release or Controlled release fertilizers
 Synthetic
 Natural organic

Soluble, quick – release fertilizers

- » Examples: urea, ammonium sulfate Ammonium nitrate (also calcium or potassium nitrate)
- » Inexpensive
- » Rapid plant response
- » Short-lived

Ammonium sulfate 2 weeks after application

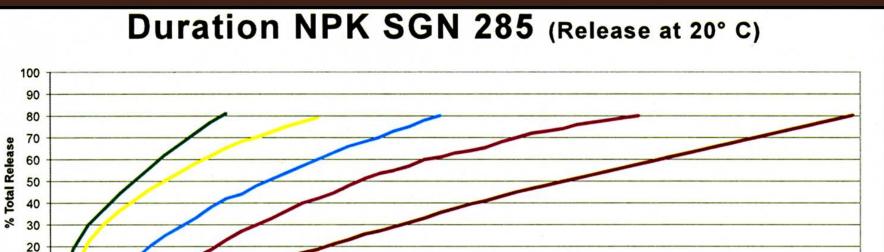
Flush of growth – collect clippings

and in

man ith

Slow release or controlled release fertilizers

- » More expensive
- » Slower initial response
 - Limit flush of growth
- » Greater longevity
- » Reduced potential for loss (leaching, runoff, volatilization, denitrification


Slow-Release - Synthetic fertilizers »Release based on soil moisture Sulfur coated urea (SCU) Polymer coated sulfur coated urea (PCSCU) Poly-S, TriKote, XCU, PolyPlus Polymer coated urea (PCU) PolyOn, Duration, Apex (nursery & Ghouse), ESN (crops) IBDU (isobutylidene diurea)

DUR-75

DUR-120

PCU longevity of release

DUR-180

Weeks

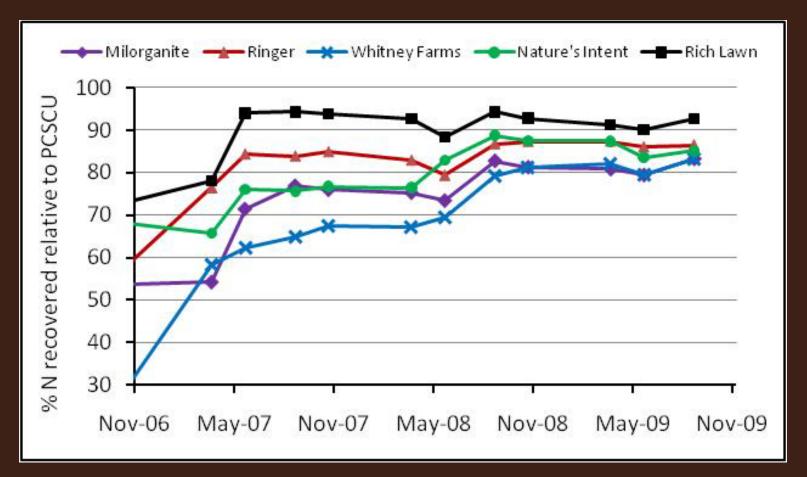
DUR-360

DUR-270

Slow Release - Natural Organic Fertilizers »Release based on soil temperature Feather meal, blood meal, poultry waste, poultry manure, fish meal, soybean meal, biosolids, bone meal Not all constituents are organic – nitrate of

soda, potassium sulfate

»Relatively high in P (narrow N:P ratio)



Slow Release - Natural Organic Fertilizers

- »May enhance soil microbial community
- »N release may be less than from synthetic fertilizers
 - Recalcitrant substrates
 - Compensate?

N Uptake from Natural Organics

4 lbs N / 1000 sq ft / yr for 3 yrs

Lower potential for leaching, runoff

Table 1. Sources and amounts of N applied and the amounts of NO₃, NH₄, and total N lost from the greens expressed as a percentage of the applied N.

N Source, application rate (kg ha" and dates of application Mix and Ureaformal-12-12-12 NH,NO, Milorganite IBDU forms of dehyde 244 163 146 146 146 N lost 2 - 16 - 736-6-73 7-26-73 10 - 17 - 736-20-74 % applied N Sand (90-0-10) NO₃⁻ 0.2 b 9.5 b 21.9 a† 7.7 b 0.9 b NH. 0.8 c 1.3 b 0.8 c 2.0 a 0.6 c 9.7 b Total 22.7 a 1.5 b 10.3 b 1.4 b Mixtures 85-5-10 80-10-10 NO. 21.7 a 0.3 c 8.7 b 2.4 c 0.7 c NH. 1.3 a 1.3 a 0.6 b 1.3 a 0.3 c Total 23.0 a 1.6 c 9.3 b 2.8 c 1.0 c Soil 0-100-0 NO₃⁻ 8.6 a 0.1 b 0.6 b 0.5 b 0.1 b NH. 1.2 a 0.9 a 0.2 a 1.2 a 0.1 a Total 9.8 a 1.0 b 0.8 b 0.2 b 1.7 b

[†] Values in a given row followed by similar letters do not differ at the 5% level of significance.

Brown et al., 1982

Lower potential for leaching, runoff

Table 1. Sources and amounts of N applied and the amounts of NO₃, NH₄, and total N lost from the greens expressed as a percentage of the applied N.

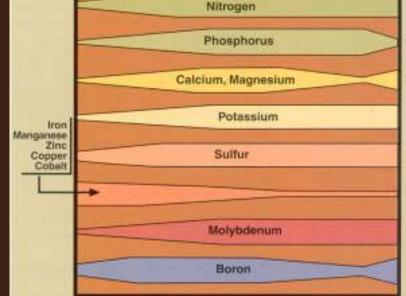
	N Source, application rate (kg ha' and dates of application							
Mix and forms of N lost	NH,NO ₃ 163 2-16-73	Ureaformal- dehyde 244 6-6-73	12-12-12 146 7-26-73	Milorganite 146 10-17-73	IBDU 146 6-20-74			
			% applied N					
Sand (90-0-1)	0)							
NO ₃ -	21.9 a†	0.2 b	9.5 b	7.7 b	0.9 b			
NH.	0.8 c	1.3 b	0.8 c	2.0 a	0.6 c			
Total	22.7 a	1.5 b	10.3 b	9.7 b	1.4 b			
Mixtures								
85-5-10								
80-10-10								
NO ₃	21.7 a	0.3 c	8.7 b	2.4 c	0.7 c			
NH.	1.3 a	1.3 a	0.6 b	1.3 a	0.3 c			
Total	23.0 a	1.6 c	9.3 b	2.8 c	1.0 c			
Soil 0-100-0								
NO ₃ -	8.6 a	0.1 b	0.6 b	0.5 b	0.1 b			
NH.	1.2 a	0.9 a	0.2 a	1.2 a	0.1 a			
Total	9.8 a	1.0 b	0.8 b	1.7 b	0.2 b			

† Values in a given row followed by similar letters do not differ at the 5% level of significance.

Brown et al., 1982

Nitrogen Fertilizer Use Recommendations » Slow release N sources Limit growth flush Provide extended response ize less often?) Reduce nitrate leaching. » 50% to 75% of N should come from a slow-release source » Temperature-dependent N sources should be applied from May through Labor Day

Use a Balanced Fertility Program


Fertility Program

- Run a soil test before applying any nutrients. (Every 3 yrs.) Test for: N, P, K, Ca, Mg, pH, % O.M.
- >What ever source is used **do not apply more than** ½ **lb. of quickly** available N per app.
- A new turf area will most likely need nutrients, while an established area will require much less as nutrients have built up over time.
- Timing of Applications: Refer to local area recommendations. Do not apply nutrients when ground is frozen.
- Use a slow release product. Do not apply organic fertilizers when soil temperatures are lower than 50 F.
- Returning or recycling grass clippings will put nutrients in soil.

Soil Levels of Nutrients for Turfgrasses in the Pacific Northwest

Nutriont	Collingual
Nutrient	Soil Level
Р	Bray P ₁ – 20-30 Sodium Acetate 5-8 ppm
K	250 ppm
Ca	3-5 meq/100 g soil, 600-1000 ppm
Mg S	1-3 meq/100 g soil, 200-600 ppm
S	25 ppm SO ₄ -S
Fe	25-50 ppm 4 5 6 7 8
Cu	1.6 - 3 ppm
Zn	6.1- 8 ppm
Mn	30-50 ppm Phosphorus
В	1.3 - 3 ppm
Мо	0.2 - 0.4 ppm
	Iron

Athletic Field Fertility Program (Soil Tests Are Required)

- Many athletic fields are sand-based to lengthen time of year for play.
- Sand encourages drainage and less compaction, but does not hold nutrients in high amounts. Usually mix in known amount of organic matter (5 to 15% by volume) after testing soil texture combinations in a soil testing lab.
- Due to high use and necessity for quick recoveries for use, a fertility program using slow release products throughout the year may total as much as 8 lbs. N/1000 sq.ft./year. Timing of applications are similar to lawns, but on a more frequent basis to encourage recovery.
- Overseeding and topdressing are also an important IPM practice to keep the athletic fields safe for player use.

Phosphorus – Environmental Concerns

 » Eutrophication - The over-enrichment of surface water with mineral or organic nutrients, resulting in a proliferation of plant life, especially algae
 » Reduces the dissolved oxygen content of water
 » Can result in death of aquatic organisms (worst case scenario)

Phosphorus – Environmental Concerns

Critical P concentrations – lakes, ponds, slow-moving streams » Avg concentration as low as 0.025 ppm » Higher tolerance in fast-moving water » Other factors may come into play

Runoff depth (volume), Ithaca, NY

» Fertilized lawn reduced runoff volume

Shallowest soil Deepest soil Table II. Runoff Depths for each Block and Land Use in the Watershed Block I Block III Land Use Block II (mm)7.76a^a 3.82b 0.51e Urban Barren High Maintenance 1.74d 0.36e 2.90b 0.26e 4.53c 4.45b Forested

^a Land uses with the same letter are not significantly different as determined by a FPLSD at $\alpha \leq 0.05$.

Phosphorus runoff, Ithaca, NY

» Lower dissolved P runoff from fertilized turf on 2 of 3 sites
» Lower particulate P runoff on all sites

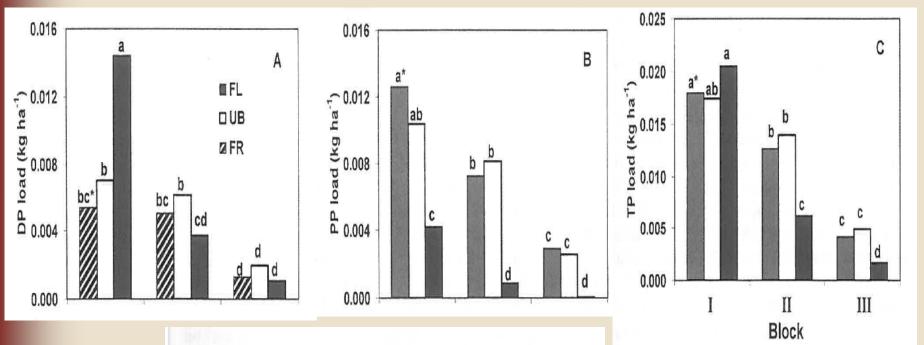


Figure 1. Mean land use (fertilized lawn (FL), urban barren (UB), and wooded (FR)) dissolved P (A), particulate P (B), and total P (C) losses by block for all 98 runoff events. *Land uses with the same letter are not significantly different as determined by a FPLSD at $\alpha \leq 0.05$.

Natural Organic Transition Study 1 Year Application Summary

Product	Soil lb. N/M/yr	Sand lb. N/M/yr	Soil/Sand lb. P ₂ O ₅ /M/yr
NatureSafe 1X 8-3-5	3	5	1.13
NatureSafe 1.5X 8-3-5	3	5	1.69
SoundGro 1X 5-4-0	3	5	2.40
SoundGro 1.5X 5-4-0	3	5	3.60
PCSCU 38-0-0-11	3	5	0.75

Puyallup, WA, Soil Study P Data

There was no significant difference between treatments for Total Soil P Average Total Soil P in Plots = 1137mg/kg Control Samples: Total P = 1005 mg/kg Bray P = 18 mg/kg

Multiple pairwise comparisons using the Dunn's procedure for Bray or Available P/Two-tailed test:

Sample	Frequency	Sum of ranks	Mean of ranks	P (mg/kg)		Groups	
BRAY P PCSCU 38-0-0-11	4	19.000	4.750	19.5	А		
BRAY P NatureSafe 1.5X 8-3-5	4	26.000	6.500	21.3	А	В	
BRAY P NatureSafe 1X 8-3-5	4	33.000	8.250	22.8	А	В	
BRAY P SoundGro 1X 5-4-0	4	63.000	15.750	35.0	А	В	
BRAY P SoundGro 1.5X 5-4-0	4	69.000	17.250	38.5		В	

Bonferri corrected significance level = 0.005

Puyallup, WA, Sand Study P Data

There was no significant difference between treatments for Total Sand P Average Total Sand Plot P = 280 mg/kgControl Samples: Total P = 294 mg/kg Bray P = 16 mg/kg

Multiple pairwise comparisons using the Dunn's procedure / Two-tailed test:

Sample	Freq.	Sum of ranks	Mean of ran	ks P (mg/kg)	Gro	ups
Bray P PCSCU	4	15.5	3.875	23.5	А	
Bray P NatureSafe 1X	4	31.0	7.750	27.3	А	В
Bray P NatureSafe 1.5X	4	31.5	7.875	28.0	А	В
Bray P SoundGro 1X	4	63.5	15.875	66.3		В
Bray P SoundGro 1.5X	4	68.5	17.125	75.3		В

Bonferri corrected significance level = 0.005

Phosphorus runoff, recommendations

- » Healthy turf reduces runoff
- » Although P runoff from turf can occur, typical low rates of fertilizer P are unlikely to contribute significantly
- » Research in MN, WI shows majority of P runoff occurs from frozen soils
- » Apply P based on soil test results
- » Fall may not be the best time to apply P

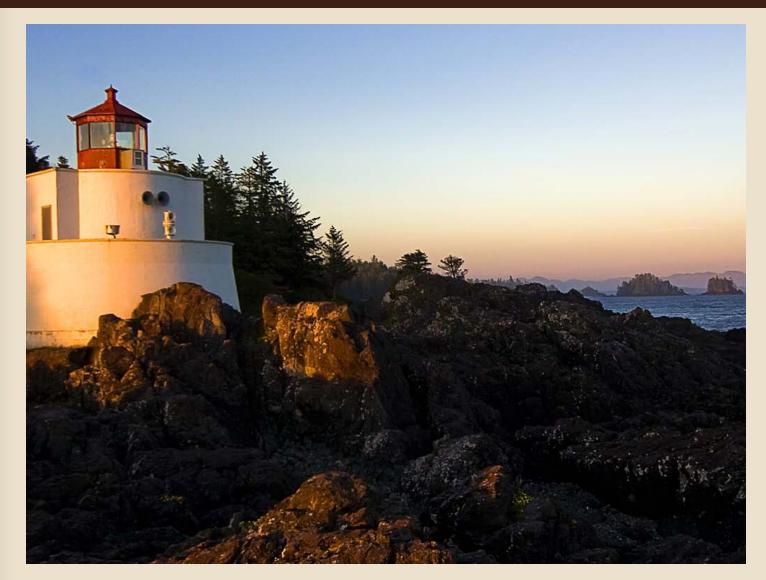
Which turfgrass diseases might be linked to lack of P?

- Microdochium Patch
- Red Thread
- Necrotic Ring Spot
- Take-all Patch

Phosphorus legislation in WA

- » Bill passed house in WA on Feb. 28, 2011.
- » Under consideration in Senate
- » Not based on best available science
- Language states that:
 P is not required to grow healthy turf
 lawn fertilizers contribute significantly to P loading
- Restricts fertilizer P application to lawns exceptions for establishment, soil test results
- » Requires clean-up from impermeable surfaces
- » Does not exempt natural organic fertilizers

So??


- Link between plant stress, disease and fertility is hard to pick apart so that separate effects can be studied.
- Seeing responses unrelated to the fungicidal benefits (often in fruit crops).
- Phosphite toxicity is described in the literature, when applied at fertilizer rates in annual crops.
- Watch rates.

How to Handle a Site with High Soil Test P

- Don't fertilizer with P.
- Remove clippings to 'mine' P from the site.
- Don't let the site get bare P in runoff is our biggest environmental issue.

We All Live Here And Need To Make Educated Choices

